zintegration

Getting Started
with ChIDE and Ch Command Shell

Ch Version 6.3

func.c - ChIDE - Professional Edition : A=
File Edit Search View Tools Debug Cplions Language Buffers Help

D@ S 4=l X[o = |Qa|th
| Fotart $Continue @Abort S=Step [ENext 2=lp S=Dowr MBresk &clear || 92Rarce P Run @ctop

1 func.c |
1 #include <stdio . h>
2
2 int i = 100;
4 int g = 200;
5 -void func(int n)} {
[} int 1= 1;
7 double a[5]1 = {1,2,3,4,5};
9 |
0}
.
12 -int main{() {
13 int i = 10;
14
ks func (i) ;
16 printf ("Done!\n") ;
17 return 0:
8}
19

Jl | 12

Locals |\fari_ab|e5 | Stack | Watch | Breakpoints |

Names Value
i 1
a 1.0000 2.0000 3.0000 4.0000 5.0000
n 10
4 i3
debug> a
a 1.0000 2.0000 3.0000 4.0000 5.0000
debugs> 1
i 1
debugs> Z*g
2%q 400
debug>
<] Ml

209 chars in 12 limes, Sel; O chars,

N A4

Copyright(©2010 by Softintegration, Inc., All rights reserved

How to Contact Softintegration

Mail Softintegration, Inc.
216 F Street, #68
Davis, CA 95616
Phone + 1530297 7398
Fax + 1530297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright(©2010 by Softintegration, Inc. All rights reserved.
Revision 6.3.0, November 2010

Permission is granted for registered users to make one cofiydir own personal use. Further reproduction,
or any copying of machine-readable files (including this)doeany server computer, is strictly prohibited.

Softintegration, Inc. is the holder of the copyright to the I@hguage environment described in this docu-

ment, including without limitation such aspects of the egsias its code, structure, sequence, organization,
programming language, header files, function and commaeg] fibject modules, static and dynamic loaded

libraries of object modules, compilation of command anchlilp names, interface with other languages and

object modules of static and dynamic libraries. Use of thstesy unless pursuant to the terms of a license
granted by Softintegration or as otherwise authorized Wwjisaan infringement of the copyright.

Softintegration, Inc. makes no representations, expresseor implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressy disclaimed. Users should be aware that
included in the terms and conditions under which Softintegation is willing to license the Ch lan-
guage environment as a provision that Softintegration, andheir distribution licensees, distributors
and dealers shall in no event be liable for any indirect, inalental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that dlcomplex software systems and their doc-
umentation contain errors and omissions. Softintegratiornshall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if Sthtegration has been advised of the errors
or omissions. The Ch language environment is not designed ticensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communic ations; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, ChIDE, Softintegration, and One Language for All ardagitregistered trademarks or trademarks of
Softintegration, Inc. in the United States and/or othemtoes. Microsoft, MS-DOS, Windows, Windows
2000, Windows XP, Windows Vista, and Windows 7 are tradesaflMicrosoft Corporation. Solaris and
Sun are trademarks of Sun Microsystems, Inc. Unix is a tradkemof the Open Group. HP-UX is either a
registered trademark or a trademark of Hewlett-PackardL@uwx is a trademark of Linus Torvalds. Mac
OS X and Darwin are trademarks of Apple Computers, Inc. QNXtimdemark of QNX Software Systems.
AlX is a trademark of IBM. All other trademarks belong to thiegspective holders.

Table of Contents

I5.2 Setup Search Paths for Commands, Header Files, and#uRdesinCh 30
i i ++ MS . . . o e e e e e e e e 33
I5.4 Interactlve Executlon of C/Ch/C++ Exnre%qons ande®tants 33
++ NS . o e e e e e 36
++ TS . v e e e e e 37
f6__Interactive Execution of Commands in the Qutput Pane 38
| : I | Linking Clcet i Cl | 38
I8__Other Computer | anguages Understood by ChIDE 41
191 ocal L anguages Supported in ChIDE 41

index 42

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

1 Introduction

Chis an embeddable cross-platform C/C++ interpreter.dtdaperset of C with classes in C++. It supports
most new features in the latest C standard called C99 witr aiker friendly high-level extensions. Ch can
be used for cross-platform scripting, shell programmirg/3D plotting, numerical computing, embedded
scripting, and quick animation. With advanced numericaltidees, Ch can be conveniently used for vari-
ous applications in engineering and science. However, @spegcially suitable for interactive classroom
presentations in teaching and for students learning C/C++.

An Integrated Development Environment (IDE) can be usedeteldp C and C++ programs. It can
typically be used to edit programs with added features adraatic syntax highlighting and run the pro-
grams within the IDE. ChIDE is a cross-platform IDE to edigbdg, and run C/Ch/C++ programs in Ch
interpretively without compilation. The user can set bpaakts, run a program step by step, watch and
change values of variables during the program executian, @hIDE is developed using Embedded Ch.
It is the most user-friendly IDE for beginners to learn comepwrogramming in C and C++. ChIDE can
also be used to compile and link edited C/C++ programs usit@€ compilers of your choice such as
Microsoft Visual Studio .NET in Windows, GNU gcc/g++ in Lirand Mac OS X.

Because Ch is interpretive, C/C++ expressions, statem@mistions, and programs can be readily
executed in Ch without compilation. Therefore, Ch is anlidebution for teaching and learning C/C++. An
instructor can use Ch interactively in classroom presiEmsivith a laptop to quickly illustrate programming
features, especially when answering students’ questlaFarners can also quickly try out different features
of C/C++ without tedious compile/link/execute/debug egcl To assist beginners in learning, Ch has been
especially developed with many helpful warning and errossages when an error occurs. instead of cryptic
and arcane messages lsegmentation faulindbus erroror crashing.

This brief document will get the user to quickly start usinglQE and Ch command shell to learn
computer programming and develop programs in C/Ch/C++.

2 Executing C/Ch/C++ Programs in ChIDE

2.1 Getting Started

ChIDE can be launched by running the same progecaide across different platforms.

In Windows, ChIDE can also be conveniently launched by deglitking its icon shown in Figuild 1 on
the desktop.

In Mac OS X x86, ChIDE can also be launched by clicking the isbown in Figur€ll on the dashboard
or in the Applications folder.

In Linux, ChIDE can also be launched under the entry Progreammiools in the startup menu. The
command

ch -d

will create an icon for Ch on the desktop. If Ch is installedhna ChIDE, an icon for ChIDE will also be

created on the desktop.
l..

Figure 1. The ChIDE icon in Windows, Mac OS X, and Linux.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

EXhello.c - ChIDE - Professional Edition _ ol x|
File Edit Seach Wiew Tools Debug Cptions Langusge Buffers Help

D H G| S| % BER X =4 a|ch

| Totart lvaontinue ®:bort S=step GEMext 2=Up S=Down WBresk UClear || $=Parse * Run @5top
1 hello.c

1 -/* File: helle.c

2 Print 'Helle, world' on the screen. */

3 #include <stdio.h>

4

5 int main{()

6 -1

T printf ("Helle, world\n") ;

8 return 0;

g9 }

10
a | D
li=1 co=1 INS (LF) v

Figure 2. The program edited inside the editing pane in ChIDE
2.2 Editing and Executing C/Ch/C++ Programs

Text editing in ChIDE works similarly to most Macintosh or diows editors such as Notepad with the
additional feature of automatic syntax highlighting. CElDan hold multiple files in memory at one time
but only one file will be visible. By default, ChIDE allows up 20 files in memory at once as described in
sectior 3.

As an example, open a new document, and type

/* File: hello.c
Print "Hello, world on the screen */
#i ncl ude <stdi o. h>

int main() {
printf("Hello, world!'\n");
return O;

}

in the text as shown in FiguE@ 2 in the editing pane. The progappears colored due to syntax highlighting.

The same progratmel | o. ¢ in CHHOVE/ denos/ bi n/ hel | 0. ¢, whereCHHOVE is the home direc-
tory for Ch, such a€. / Ch in Windows forC: / Ch/ denps/ bi n/ hel | 0. c and/ usr/ | ocal / chin
Mac for/ usr/ | ocal / ch/ denps/ bi n/ bi n/ hel | 0. ¢, can also be loaded using thel e | Open
command. By default, this program is loaded when the ChlDdaged. In Windows, a program listed un-
der the Windows explorer can also be dragged and droppedtbe ©hIDE, which will open the program
in the editing pane.

Save the document as a file namtesl | 0. ¢ by the commandFi | e | Save As, as shown in Fig-
ure[3. You can also right click the file on the file name on the @at) located below the debug bar, and then
select the commanBave As to save the program as shown in Figlire 4.

The line numbers, margin, and fold margin on the left sidehef ¢diting pane can be suppressed as
shown in Figurd® by clicking the commandsew | Li ne Nunbers, Margin, Fold Margin,
respectively. The fold point marketrs’ and’ +’ on the fold margin can be clicked to expand and contract
a fold for a block of code, respectively.

There are four panes in ChIDE: the editing pane, debug pateigdcommand pane, and output pane,
as shown in FigurEl6. Figufé 6. also shows various terms usddscribe ChIDE in this documentation.
The debug pane is located either to the below of the editimg jp& on the right. Initially it is of zero size,
but it can be made larger by dragging the divider betweerdtha editing pane. The debug command pane

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Bl hello.c - ChIDE - Professional Edition =]
IW Edit Search View Tools Debug Options Language Buffers Help
Mewy Cirl+h b | Ch
Cpen... Cirl+O ext 2=Up S=Down ®Bresk &Clear || =Parse * Run @Stop
Cipen Selected Filemame Chrl+Shift+0
Renert Cirl+R a
Close CHrl+wW h the screen. */
Sane Cir4S
5 AS... Ift+5
Save a Copy... Cirl+5hift+P
Ercoding 4 Ly -
Export 4
Page Sehup... _ILI
Print... Ctrl+P >
Load Session... v

Figure 3. Saving the edited program using the comnféride | Save As in ChIDE.

Bl hello.c - ChIDE - Professional Edition =]
File Edit Seach ‘Wiew Tools Debug Options Language Buffers Help

D@ G| & $ B X = |Q ab|ch
| ¥stat $Conftinue @Abot S=Step GEhext 2=p S=Down BBreak WClear || $=Parse * Run @Stop

1
1 hell Close |

1 |hello.chel;

2 o 'Hello, world' on the screen. */

3 Save A <stdio.h>

4 —

5 Indent }

] ;

7 Print £("Hello, world\n") ;

8 return 0;

9 }

10

< | 2|
[1=3 co=2 INS (LF) v

Figure 4. Saving the edited program in ChIDE by right clickithe file name.

@helln.c - ChIDE - Professional Edition 1o

File Edit Seach Wiew Tools Debug Cptions Langusge Buffers Help

D H G| S| % BER X =4 a|ch
| ¥stat $Continue ®Lbot S=Step GENext 2= S=Down UBreak WClear || $=Parse * Run @Stop
1helloc |
/* File: hello.c
Print 'Hello, world' on the screen. */
#include <stdio.h>

int main{()

{
printf ("Hello, world\n") ;
return 0;

}

| | [

li=1 co=1 INS (LF) A

Figure 5. The program displayed without line numbers, nmargind fold margin in ChIDE.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

E%hello.c - ChIDE - Professional Edition i

File Edit Search View Tools Debug Options Language Buffers Help
[toolbar |+ D@ kB & /L o@% n- Qe o
debugbar [FStart $ontinue @Abort SEStep GNext Z=lp “=Down BBresk MClear
> 1hello.c |

tab

1l -/* File: hello.chel;
2 Print 'Hello, world' on the screen. */
= #include <stdio.h>
| editing pane 4 S
5 int main()
a -{
_‘T'. printf("Hello, world\n");
g return 0;
9 }
10

< |

debug pane ;
g p — | Locals| Variables | Stack | watch Breakpoirts |
selection bar i -
Number Breakpoint Location
1 C:\Ch\demos\bin\hello.c:7

| debug pane >

| output pane | > debug>
debug
command >
pane «| | I

143 chars in 10 lines. Sel; O chars,

Figure 6. Terms related to the layout of ChIDE.

is located either to the below of the debug pane or on the.riBletails about the debug pane and debug
command pane will be described in secfidn 4. Similarly, thipot pane is located either to the below of the
debug pane or on the right. The output pane is on the left ofi¢thelg command pane. Initially the output

pane is of zero size, but it can also be made larger by dradgbengdivider between it and the debug pane.
By default, the output from the program is directed into th&pat pane.

TheView | Vertical Split commandcan be usedtochange the layout of the ChIDE in akrtic
mode, in which the editing pane is on the left, the debug parie the middle, and the output pane and
debug command pane are on the right. The location and sibe @hlIDE, the sizes of editing pane, debug
pane, and output pane in the current session are saved whHBfE @hclosed. When ChIDE is started
next time, these saved values in the previous session willseel for the new session. The command
View | Default Layout will use the values in ChIDE global and user options files s2t€hIDE to
use the default layout.

A C/Ch/C++ program with the file extensiorc, . ch,. cpp, . cc, and. cxx, or without file extension
can readily be executed in ChIDE. Perform Bwen on the debug bar drool s | Run command as shown
in FigurelT to execute the programel | 0. c. Instead of performing thBun or Tool s | Run command,
pressing function key2 will also execute the program. Detailsfor keyboard commsaan@ described in
sectior3b.

When the prograrhel | 0. c is executed, the output pane will be made visible if it is Haady visible
and will display

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Blhello.c - ChIDE - Professional Edition =]
File Edit Search Wiew Tools Debug Options Language Buffers Help

D@ G| & $ B X = |Q ab|ch

| ¥start $Conlinue ®Lbot S=Step GCENext 2=l SzDown UBresk &Clear || $=Parse » Run @BSiop
1 hello.c |

-/* File: hello.chel;

iy

2 Print 'Hello, world' on the screen. */
3 #include <stdio.h>
4
5 int main()
6 -
T printf ("Helle, world\n") ;
g return 0;
9 }
10
‘| ol

>ch -u "hello.c”
Hello, world
rExit code: 0

dl | il

li=1 co=1 INS (LF) =

Figure 7. Executing the program using the commRad in ChIDE and its output.

>ch -u "hello.c"
Hell o, world
>Exit code: O

as shown in FigurEl 7. The first line in the blue color
>ch -u "hello.c"

from ChIDE shows that it uses the commartdto execute the progratnel | 0. c. The next line in the
black color is the output from running the progréml | 0. c. The last line in the blue color is from ChIDE
showing that the program has finished. This line displayse#tiecode for the program. An exit code of O
indicates that the program is terminated successfully eystatement

return O;
or
exit (0);

in the program. If a failure had occurred during the executibthe program or the program is terminated
with a non-zero value for a return or exit statement such as

return -1;
or
exit(-1);

the exit code would be -1.
ChIDE understands the error messages produced by Ch. Thiseadd a mistake to the program by
changing the line

printf("Hello, world\n");

to

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Elhello.c - ChIDE - Professional Edition s
File Edit Search Wiew Tools Debug Cptions Language Buffers Help

DG & & E@X| w0 aqh th
| Fstart Boonfinue ®Abot S=Step Bilext 2=l =Down BBreak &Clea || $=Parse P Run @stop

~lolx|

1hello.c |
1 -/* File: hello.chel;
2 Print 'Helle, world' on the screen. */
3 #include <stdio.h>
a4
3 int main()
6 -
T printf ("Helle, world\n";
8 return 0;

9 }

10

=

=eh =1 "hello«g"

ERROR: missing ") ' before ;7

ERRCR: syntax error before or at line 7 in file 'hello.c’
==> printf ("Hello, worldin™;
BUG: printf ("Hello, world\n";<== 227

ERRCR: cannot execute command 'hello.c’
*Exit code: -1

|
| I ¥
/

|142 chars in 10 lines. Sel O chars.

Figure 8. The error line in output from executing prograal | 0. c.
printf("Hello, world\n";

Perform theRun or Tool s | Run command for the modified program. The results should lookl@m
to those below

ERROR: missing ')’ before ';’

ERROR: syntax error before or at line 7 in file ' C \ch\denos\bin\hello.c’
==>: printf("Hello, world\n";
BUG printf("Hello, world\n"; <== ?27??

ERROR: cannot execute conmmand ' C:\ch\denos\bin\hello.c’

as shown in FigurEl8. Because the program fails to execugegxit code -1 is displayed at the end of the
output pane as

>Exit code: -1

If you double click the red colored error message in the duypgme shown in Figurd 8 with the left button
of your mouse, the line with incorrect syntax and the errossage in the output pane will be highlighted
with a yellow background as shown in Figlile 9. The caret iseddw this line and the pane is automatically
scrolled if needed to show the line. ChIDE understands HutHite name and line number parts of error
messages so it can open another file (such as a header fil®rg erere caused by that file.

While it is easy to see where the problem is in this simple caséh a large file, the
Tool s | Next Error Message command, or the function kely4, can be used to view each of the
reported errors. Upon performifigpol s | Next Error Message, the first error message in the out-
put pane and the appropriate line in the editing pane ardigiigbd with a yellow background.

The commandrool s | Previ ous Error Message, or the function keyShi ft +F4, can be
used to view the previous error message.

The output pane can be opened and closed by the comiiaent | Qut put Pane. The contents
of the output pane can be cleared by the commdnglw | Cl ear Qut put Pane or the function key
F9 as shown in Figude0.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

BXhello.c - ChIDE - Professional Edition _ ol x|
File FEdit Search Wiew Tools Debug Options Language Buffers Help

IDSsEHRS]f | X Q|

| Wstart $Confinue ®Abot F=Step Ehext <=l S=Down UBreak &Clear || $=Parse » Run SStop
1 hello.c |
-/* File: hello.chel;

Print 'Hello, world' on the screen. */
#include <stdio.h>

int main()
=1
printf ("Hello, world\n";
return 0;

B o
B L e S I R O R i

4

]

>ch -u "hello.c™

ERRCR: missing ") ' before ';°'

ERROR: syntax error before or at line 7 in file ‘“hello.c'
e printf ("Hello, worldin";
BUG: printf ("Hello, worldin";<== 777

ERROR: cannot execute command 'hello.c'

»Exit code: -1

<] | i
7

142 chars in 10 lines. Sel: O chars.

Figure 9. Finding the error line in output from executinggnam hello.c.

SXhello.c - ChIDE - Professional Edition - ol x|

File Edit Search | View Tools Debug Options Language Buffers Help

D= W B & & Change Font Size
| Wstart ®Confin Vertical Split Lo || 9=Parse P Run SStop
1 “e.!"”‘ Default Layout
I -/* File
2 Prinijue Ut Pane
3 #includs Clegr Debug Command Pane Fi0
4 Clear Debug Console Window
g int mair
- { Toggle current fold
1 prir Toggle all folds
8 retu
g } Full Screen B
10 v Tool Bar
v Debug Bar
v Tab Bar
v Status Bar
Whitespace Cirl+shift+8
End of Line Cirl+Shift+9
v Indentation Guides
v Line MNumbers
v Margin
v Fold Margin
Debug Pare
v Cuput Pane F&
7 Debug Console Window Fil LI
————————— Debug Console Window Always On Top
=ch -1 "hello.e”
ERRCR: missing ") ' hefore ;T
ERRCR: szyntax error before or at line 7 in file Thello.c'
== printf ("Hello, worldin";
BUG: printf{"Hello, worldin";<== 2?7272
ERROR: cannot execute command "hello.c’
»Exit code: -1
4] | i
li=7 co=28 N5 (LF) .

Figure 10. Clearing the contents in the output pane.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.3 Executing C/Ch/C++ Programs with the User Input

Bscanf.c - ChIDE - Professional Edition __ =lof x|

File Edit Seach Wiew Tools Debug Cptions Language Buffers Help
DEHE|S 2 B @ X e >[4 atth
| ¥start Brortine ®Abot S=Step EMext 2=lp S=Down BBreak GClea || $=Parse P Run Sstop
1scantc|
ik /* Input and cutput example */

2 #include <stdio.h>

3

4 -int main() {

5 int num;

5

7 printf("Please input a number\n");

8 scanf ("3d", &num) ;

9 printf ("Your input number is #d\n", num) ;
10 return 0;
H |

12,

4| o

»ch -u "scanf.c"

Please input a number
56

Your input number is 56
*Exit code: 0O

| I JLi|
/

i=1 co=1 ING (LF}

Figure 11. Executing the program with input and output.

If the command execution has failed and is taking too long tomglete, then the
St op on the debug bar cfool s | St op Execut i ng command can be used to stop the program.

You may use the commariRar se on the debug bar dfool s | Par se to just check the syntax error
of the program without executing it.

2.3 Executing C/Ch/C++ Programs with the User Input

ChIDE can also execute programs that require the user’s thpugh such C functions asanf() For ex-
ample, load the program C:./ Ch/ denos/ bi n/ scanf. c in Windows or
/usr/1ocal / ch/ denos/ bi n/ scanf . c in Linux or Mac OS X, as shown in FiguEel11.

When the program is executed, the user will be prompted tatiamumber as shown in Figurel11. The
user then must type in a number in the same pane for both imgubatput. Both input number of 56 and
output are shown in Figufel1.

2.4 Executing C/Ch/C++ Programs with Plotting

Running a C/Ch/C++ program with graphical plotting is thensaas running other programs. This can be
demonstrated by an example.

Type in the code as shown in Figufe]12. The same program can lads loaded from
C. / Ch/ denos/ bi n/ f pl ot xy. cpp When the program is executed, it creates a plot shown in Eig8ir
The plotting functiorfplotxy () is available in Ch or Softintegration C++ Graphical Liky@SIGL). The pro-
gram uses the plotting functidplotxy () to plot function func() with 37 points and with the x valuethe
range from O to 360.

To compile a program using plotting features with headerfilglot.h, the program has to be treated as
a C++ program with file extension .cpp to link with a SIGL C+-oftihg library. How to compile a C++
program using a C++ compiler will be described in se€fion?.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.4 Executing C/Ch/C++ Programs with Plotting

B fplotxy.cpp - ChIDE - Professional Edition B _ ol x|
File BEdit Search ‘iew Tools Debug OpHoms Language Buffers Help
DG &S| = | x| s = qqt|th
| ¥start $orfinle ®ALoE S=Step Eiext 2=lp =Down MBreak @clear || 9=Parse P Run BStop
1 fplotxy.cpp |

1 - /* File: fplotxy.cpp

2 Plot a function using plotting function fplotxy() */

2 #include<math.h>

4 #include<chplot .h>

5

=) /* function to be plotted */

7 —deouble func(double x) {

i} return sin(x*M PI/180);

9 }

10

11 -int main() {

12 double %0 = 0, xf = 360; /* beginning and end points */

13 int num = 37; /* number of points for the plot */

14

15 fplotxy(func, x0, xf, num, "function sin(x)", "x (degree)", "sin(x)");

16 }

17
< | [0
li=1 co=1 INS (LF) .

Figure 12. A program using the plotting functiuiotxy ().

function sin(x)

sin(x)
o

_1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400
X (degree)

Figure 13. The output of the plotting program in Figlré 12.

Many sample programs are available in CHHOME/demos/bin@AIOME/demos/lib/libch/plot di-
rectories to demonstrate capabilities and usages of théngldeatures in Ch. For example, the program
C. / Ch/ denps/ bi n/ pl ot xy. cpp uses the plotting functioplotxy() plot data stored in arrays. When it
is executed, it creates the same plot shown in Figukel 13. Thegragm
C./ Ch/ denps/ bi n/ f pl ot xyz. cpp uses the plotting function fplotxyz() to plot the function
cos(x) sin(y) with two independent variablesandy for the z value in the range from -3 to 3 andin the
range of -4 to 4. The plot uses 80 points for both and y coordinates. The program
C: / Ch/ denos/ bi n/ | egend. cpp shows how to add legends for multiple curves to a plot.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argursent

Blcommandarg.c - ChIDE - Professional Edition _ ol x|
File Edit Search ‘iew Tools Debug Options Language Buffers Help

D@ EHR| S| % =B X[- =|Qab|ch

| ¥start $Cortinue @cbot S=Step ENext 2=lp S=Down MBresk UClear || $=Parse » Run @Stop
1 commandarg.c |

1 #include <stdio.h>

2

3 -int main(int argec, char *argv[]) {

4 int i;

5

6 - for(i=0; argv[i] != NULL; i++) {

T printf(Targv[®d] = %s\n", i, argv[i])

8 }

g return 0;

10 }

11
< | D
173 chars in 11 lines. Sel: O chars. 4

Figure 14. A program for handling command line arguments.

Blcommandarg.c - ChIDE - Professional Edition _ ol x|
File Edit Search Wiew @ Tools Debug Cptions Langusge Buffers Help

D& =8 Pase
| ¥start $Continue @ak Run F2 bak UClear || $=Parse * Run @Stop
1 commandarg.c | Compile
1 #include <stc¢ .
2 Lirk
2 -int main(int Build
4 int i Go
5)
P for (i=0: Stiop ExeciUting
1 print [ndent Crl+0
8 }
9 TSI Command Line Arguments
10 }
11 Next Error Message F4
Previous Error Message Shift+F4
< | i
commandarg.c : 11/17/2009 - 12:19:40 AM | 4

Figure 15. Launching the modal Command Line Arguments dialo
2.5 Executing C/Ch/C++ Programs with Command Line Argumens

ChIDE can run programs with changeable command line argtendio set the command line arguments,
use thefTool s | Command Li ne Argument s command to view the modeless Command Line Argu-
ment dialog which shows the current command line argumerdsaiows setting new values. The acceler-
ator keys for the main window remain active while this dialegdisplayed, so it can be used to rapidly run a
command several times with different arguments. Alteuwedj a command executed in the Output Pane as
described in sectio 6 can be made to display the modal Cochiniae Arguments dialog when executed
by starting the command with’a ’ which is otherwise ignored as shown below.

* C:/ Ch/denps/ bi n/ commandar g. c
* "C./Ch/ denps/ bi n/ commandar g. c*

If the modeless Command Line Arguments dialog is alreadipleisthen the *’ is ignored.

The program in FigurEZ14 will accept the command line argusand print them out. The command
Tools | Command Li ne Argunents as shown in FigureZl5 launches the modeless Command Line
Argument dialog. FigurEZ16 shows how command line argumamsetup. The output from execution of
this program with command line arguments is displayed inufeT.

10

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argurment

commandarg.c - ChIDE - Professional Edition _|olx|
File Edit Search VWiew Tools Debug Options Language Buffers Help

DS Ed X =[G at|ch
| Fotart $oorlie @Abot S=Step EMext 2=lp S=Down WBreask WClew || 9=Parse ¥ Run @Siop
1 commandarg.c |

it kinclude <stdio.h>

2

32 -int main(int arge, char *argv[]l) {

4 int i;

5

6 - for(i=0; argv[i] != NULL; i++) {

T printf (Targv[id] = %s\n", i, argv[il);
a }

w o, Y m Command Line Argumentsibs
HE 1: |—D aptioni

A |fv optionz

2z |”Dpticur13 with space"

4: |
Set Cancel
Al | 2

li=1 co=1 INS (LF)

N

Figure 16. Setting command line arguments.

Bicommandarg.c - ChIDE - Professional Edition =1
File Edit Search Wiew Tools Debug Options Language Buffers Help
e8] E. x|w = |a | eh

| Fstart $Continue ®Abork S=Sten Ehlext 2=lp =Down BBresk &Clear || 9=Parse *Run BShon
1 cummandarg.c-|

3 #include <stdio.h>

2

3 —int main(int arge, char *argv[l) {
4 inE i

5

& - for (i=0; argv[i] != NULL; i++) {
T printf(Targv[id] = %s\n", i, argwv[i]);
g }

9 return 0;

a }

i1

-~
— e

»ch -u "commandarg.c" -o optionl -v optionZ "option3 with space”

argv [0] = commandarg.c
argv[l] = -o

argv[2] = optionl

argv([3] = -v

argv[4] = optionz

argv[5] = option3 with space

*Exit code: 0O

< I Ji|
4

li=1 co=1 INS (LF)

Figure 17. Executing the program with command line argusient

11

3 EDITING IN CHIDE 2.6 Indenting C/Ch/C++ Programs

Blhello.c - ChIDE - Professional Edition _ ol x|
File Edit Search Wiew Tools Debug Options Language Buffers Help
DS EHE| &S| $BRa X = |[Qat ch
| ¥stat ¥Continue @sbort S=Step EhMext *=lp SzDown BBreak &Clear || $=Parse » Run ©ctop
1helloc |

1 -/* File: hello.chel;

Print 'Helle, world' on the screen. */
#include <stdio.h> Urigs

Redo

2

3

4

5 int main()

5 -1 Cut
7

g

]

1]

printf("Helle, world\n"); Copy
return 0; —
Paste

1 Delete

Select All

Close

< |

MNow i5: Date=12/5/2009 Time=3:30:54 PM

A=

Figure 18. Using editing commands by right clicking on thdied pane.
2.6 Indenting C/Ch/C++ Programs

For readability and software maintenance, each line in graro should be properly indented. This is
especially important for readability for a program with marested loops and selection statements. The
commandTool s | | ndent on the menu bar properly indents the program in the editingeparou
can also right click the file on the file name on the Tab bar, tetdelow the debug bar, and then select
the command ndent to indent the program. Figuf@ 4 shows the commindent when the file name
hel | 0. ¢c on the Tab bar is right clicked.

3 Editing in ChIDE

Most text editing features in a word processor such as Magtd&ord or Notepad are available in ChIDE.
Menus on the tool bar and menus under the comntaiid on the menu bar can be used to edit programs
in the editing pane. Some unique features for editing C/&h/@rograms in ChIDE are described in this
section.

3.1 Edit

In Windows, Right clicking on the editing pane will also tginp the commonly used editing commands as
shown in FiguréT8.

As the user inputs the text into the editing pane, if the imgitihg matches a word in the edited file, the
matched word will be displayed. The user can hit Hm er key to automatically complete the input for
the matched word. However, the user can t@be | +Ent er to list all matched words, use the arrow key
to select a word, then tygent er key to complete the word.

Rectangular regions of text can be selected in ChIDE by hgldown the Alt key on Windows or the
Ctrl key on Linux and Mac OS X while dragging the mouse overtéxe.

Key commands and abbreviations can be used to speed umediabld® in sectioh=35 lists many key
commands for quick editing. Abbreviations are describeseictio 3.6

12

3 EDITING IN CHIDE 3.2 Find and Replace

3.2 Find and Replace

ChIDE has options to allow searching for words, regular egpions, matching case, in the reverse direction,
wrapping around the end of the document. C style backslasipes may be used to search and replace
control characters. Replacements can be made individualr the current selection or over the whole
file. When regular expressions are used, tagged subexqgmessin be used in the replacement text. Regular
expressions will not match across a line end.

3.3 Changing Font Size

For the classroom presentation, the font size of the digplgyrogram can be enlarged by clicking the
commanadvi ew | Change Font Si ze, and then make changes. In addition, the keyboard commands
Ctrl +Keypad+,Ctr| +Keypad- ,andCt r | +Keypad/ can be conveniently used during a presentation
to magnify the font size, reduce the font size, and restaeddht size to normal, respectively, as shown in
Table[2 in sectiof-3]15. Note that for a laptop without a sepakaypad, to use the keyboard commands,
you need to turn on “Num Lock” by pressirghi f t +NumlLk key first. Then, use the keys on the keypad.
For example, press the k€} r | +Keypad+ with the key for' +’ next to theShi ft key.

3.4 Folding

ChIDE supports folding for C/Ch/C++ and several other laaggs as presented in sectfdn 8. Fold points
are based upon indentation for C/Ch/C++ and on countingelréar the other languages. The fold point
markers can be clicked to expand and contract folds as shoRigures® anfl5 in sectién?.2. The keyboard
commandCt r| +Shi ft +Cl i ck in the fold margin will expand or contract all the top levelds. The
commandCt r | +Cl i ck on a fold point to toggle it and perform the same operationlbohédren. The
commandshi ft +Cl i ck on a fold point to show all children.

3.5 Keyboard Commands

Keyboard commands in ChIDE mostly follow common Windows &K+ conventions. All move keys
(arrows, page up/down, home and end) allow to extend or eetihecstream selection when holding the Shift
key, and the rectangular selection when holding the Shiftalhkeys. Some keys may not be available with
some national keyboards or because they are taken by tlersgsch as by a window manager on GTK+.
Keyboard equivalents of menu commands are listed in the smienu
Table[l lists the most commonly used commands and theirsgoneling keyboard commands.
Table[2 lists less commonly used commands with no menu dgquoiva
By default, function keys F9, F10, F11, and F12 in Mac OS X aecljpinded to certain features. To use
these function keys for ChIDE as shown in Table 1, you canbtésthese pre-binding with the following
steps:
. Click the Apple symbol on the upper left corner.
Click System Preferences.
Click Keyboard & Mouse.
Click Keyboard Shortcuts.
Click to disable the pre-selected bindings for F9, F10, htl F12.

3.6 Abbreviations

Abbreviations in ChIDE can replace a short name with a preddftext for quick editing text or programs.
To use an abbreviation, type itand uselte t | Expand Abbrevi ati oncommand orth€t r | +B
key to insert the expansion. The abbreviation is replacedrbgxpansion defined in the abbreviation files,

13

3 EDITING IN CHIDE 3.6 Abbreviations

Table 1. Commonly used commands and their correspondirigokegt commands in ChIDE.

Command Keyboard Command
Help F1

Run C/Ch/C++ program in Ch F2

Find Next F3

Find Previous Shift+F3
Next Error Message F4
Previous Error Message Shift+F4
Start (Debug the program) F5

Step (Single step) F6

Next (Step over the next statement) F7
Close/Open Output Pane F8
Clear Output Pane F9

Clear Debug Command Pane F10
Close/Open Debug Console Window F11
Full screen F12

one is global and the other is the user specific. The globakalations for writing C/Ch/C++ can be opened
by the command

Options | Open ChlDE d obal Abbreviation File

The global abbreviations can be overwritten by the usereafidition. The user abbreviation file can be
opened by the command

Options | Open ChlDE User Abbreviation File
An abbreviation file contains a list of entries of the form
abbr evi ati on=expansi on

An abbreviation name can have any character (except cattieoiacters such as CR and LF), including
accented characters and multibyte characters for Asigubages such as Chinese.

The abbreviation names have properties files limits: theyotstart with sharp (#) or space or tab (but
can have spaces inside); and they cannot havecharacter inside. An abbreviation name is limited to 32
characters, which should be more than enough faldreviation

An expansion may contain new line characters indicatet\y . The character |’ in an expansion
marks the position where the caret will be after expansion.in€lude a literal | * in an expasion, use
R

When expanding, the names don’t need to be separated froprakimus text, i.e. if you definé as
" &eacut e’ , you can expand it inside a word.

If a name is the ending of another one, only the shorter orlde/iéxpanded, i.e. if you defineg i ng’
and’ gat heri ng’ , the later will see only théri ng’ part expanded.

The global programming abbreviations can be used to spedteutyping and indenting programs.
Table[3 lists the global abbreviations predefined for wgit®YCh/C++ programs.

A sample abbreviatiohw is included in the distributed default user abbreviatioa. filf you type the
abbreviationhw followed by theCt r | +B key, the contents for the header for a homework assignmsnt, a
shown in Figuré119, will be added in the editing pane conughie You may edit the user abbreviation file
by the command

Options | Open ChlDE User Abbreviation File

to configure the abbreviatidmwwith your name and relevant information for a class or pitojec

14

3 EDITING IN CHIDE

3.6 Abbreviations

Table 2. Less common commands and their corresponding &aylsommands in ChIDE.

Description Keyboard Command
Magnify font size Ctrl+Keypad+
Reduce font size Ctrl+Keypad-
Restore font size to normal Ctrl+Keypad/
Cycle through the opened files in the buffers Ctrl+Tab
Indent block Tab

Dedent block Shift+Tab

Delete to start of word Ctrl+BackSpace
Delete to end of word Ctrl+Delete

Delete to start of line Ctrl+Shift+BackSpace
Delete to end of line Ctrl+Shift+Delete
Go to start of document Ctrl+Home

Extend selection to start of document Ctrl+Shift+Home
Go to start of display line Alt+Home

Extend selection to start of display line Alt+Shift+Home
Go to end of document Ctrl+End

Extend selection to end of document Ctrl+Shift+End
Go to end of display line Alt+End

Extend selection to end of display line Alt+Shift+End
Expand or contract a fold point Ctrl+Keypad*
Create or delete a bookmark Ctrl+F2

Select to next bookmark Alt+F2

Scroll up Ctrl+Up

Scroll down Ctrl+Down

Line cut Ctrl+L

Line copy Ctrl+Shift+T

Line delete Ctrl+Shift+L

Line transpose with previous Ctrl+T

Line duplicate Ctrl+D

Find matching preprocessor conditional, skipping nestezso Ctrl+K

Select to matching preprocessor conditional Ctrl+Shift+K

Find matching preprocessor conditional backwards, skippested ones Ctrl+J

Select to matching preprocessor conditional backwards [+ Shift+J
Previous paragraph. Shift extends selection Ctrl+[
Next paragraph. Shift extends selection Ctrl+]
Previous word. Shift extends selection Ctrl+Left
Next word. Shift extends selection Ctrl+Right
Previous word part. Shift extends selection Ctrl+/

Next word part. Shift extends selection

Ctyl+

3 EDITING IN CHIDE

3.6 Abbreviations

Table 3. The default global abbreviations and their exmanssi (Continued)

Abbreviation Expansion
com *| *

inc #include<| >

myinc #include' | "

def #defing

main function main()
mainarg function main() with arguments
if if statement

elseif else if statement
else else statement

for for loop

while while loop

do do-while loop
switch switch statement
foreach foreach loop

a [|]for an array index
C '| * for a character

S ”| " for a string

p (|) for parentheses
pi M_PI|

epsilon FLTEPSILON
cond | ?: for conditional operator
sizeof sizeof|()

struct struct structure
union union structure
enum enum structure
class class structure
stdlib.h include stdlib.h
time.h include time.h
assert.h include assert.h
complex.h include complex.h
ctype.h include ctype.h
errno.h include errno.h
fenv.h include fenv.h
float.h include float.h
inttypes.h include inttypes.h
iS0646.h include is0646.h
limits.h include limits.h
locale.h include locale.h
math.h include math.h

16

3 EDITING IN CHIDE

Table 3. (Continued)

Abbreviation Expansion
setjimp.h include setjmp.h
signal.h include stdarg.h
stdarg.h include stdarg.h
stdbool.h include stdbool.h
stddef.h include stddef.h
stdint.h include stdint.h
stdio.h include stdio.h
stdlib.h include stdlib.h
string.h include string.h
tgmath.h include tgmath.h
time.h include time.h
wchar.h include wchar.h
wctype.h include wctype.h
chdl.h include chdl.h
chplot.h include chplot.h
chshell.h include chshell.h
numeric.h include numeric.h
func a function definition
prot | (); for a function prototype
call | (); for calling a function
printf printf(" | \ n");
scanf scanf(| ", &);

sin sin()

a standard C function namecall the standard C function

3.6 Abbreviations

=% (Untitled) * ChIDE - Professional Edition _ ol x|
File Edit Search ‘Wiew Tools Debug Options Language Buffers Help
D EE S| 2Bl X = |8 aqk ch
| Ftal BCoptinue @Abot S=aten Eied 2=l S=Down BErede QClear || F=Pase * Run @stop
1 Untitled = |

1 _'l,f iii

2 * File: |myhello‘c

3 * Homework 1 for EMES,

4 * Purpose: Print multiple lines on the screen.

3 * AButhor: FirstName LastName

6 *** /‘

T #include <stdio.h>

8

8 -int main() {

10 printf ("\n") ;

2lip return 0;

12 }
4| o
301 chars in 12 lines, Sel: O chars. 4

Figure 19. Using the abbreviatidrwto create the header for a homework assignment.

17

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

3.7 Buffers

EXhello.c - ChIDE - Professional Edition _ ol Xl
File Edit Search Wiew Tools | Debug Options Language Buffers Help
D@ R & % B/ X| v Start(Debug the progam from the begirning) FS
| ¥stat ¥continus @sbert S= Continue (Debugthe program) from the cumment location) top
1 hello.c | Abort (Abort the runmning progranm)

1 -/* File: hello.che: 35tep (Single step) F&

2 Print 'Hello, wc Pext (Step over the next staterment) F7

3 #include <stdio.h> |5 (Wove up the call stack ene function)

;1 it inQ By (Move dowimn tive call stack amne flnetion)

. ?n main Braak (Set a breakpoint at the selected line)

7 printf ("Hello, Clear (Clear a breakpoint at the selected line)

g } return 0; Digplay special varizbles in debug pane for Locals and Wariables

10

dl | i
143 chars in 10 lines. Sel: O chars. A

Figure 20. Debug menus.
3.7 Buffers

ChIDE has 20 buffers by default, each containing a file. Thalmer of the default buffers can be changed
in the user option file for ChIDE. ThBuf f er s menu can be used to switch between buffers, either by se-
lecting the file name or using tieuf fers | Previous Fil eandBuffers | Next Fil e com-
mands. The keyboard commagtir | +Tab cycles through the opened files in the buffers as shown in
Table[d in sectiofi 315.

When all the buffers contain files, then opening a new file esiasbuffer to be reused which may require
a file to be saved. In this case an alert is displayed to enkaneser wants the file saved.

3.8 Sessions

A session is a list of file names and some options for ChIDE. dusave a complete set of your currently
opened buffers as a session for fast batch-loading in thegfuSessions are stored as plain text files with
the extension ".session”.
Use the commandsi | e | Load SessionandFile | Save Sessi ontoload/save sessions.
When ChIDE is closed, the opened buffers are saved in a se8floen ChIDE is started next time, the
previously saved session will be loaded automatically ertew session.

4 Debugging C/Ch/C++ Programs in ChIDE

The ChIDE has all capabilities available in a typical del=rgigr binary C programs. The debug interface
commands, such & art andSt ep, are available under the commabebug on the menu bar as shown
in Figure[20. They are also available directly on the debugTae applicable commands on the debug bar
at any point of debugging will be clickable. Non-clickablenemands are dimmed.

4.1 Executing Programs in Debug Mode

The user can execute the program in the editing pane in thegdabde by thé&t art command or function
key F5. The program will stop when a breakpoint is hit. The ca@ execute the program line by line either
by commandSt ep or Next . The commandst ep or function key F6 will step into a function whereas
the commandNext or function key F7 will step over the function to the next lifeuring debugging, the
commandCont i nue can be invoked to continue the execution of the programhtélgrogram ends or it
hits a breakpoint, which will be described in sectiod 4.3.

18

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.2 Using the Debug Console Window for Input and Output

SiDebug Console Window _ ol x|

Hello, world :I

< | v 4

Figure 21. The Debug Console Window for input/output in dging.

If a program execution has failed and is taking too long to jglete, then the commanibort can be
used to stop the program.

4.2 Using the Debug Console Window for Input and Output

When a program is executed in the debug mode, the standant] iogtput, and error streams are redi-
rected in a separate Debug Console Window shown in FigdreBi default, the console window al-
ways stays on the top of other windows. This default behagar be turned off or on by the com-
mandVi ew | Debug Consol e W ndow Al ways on Top. The console window can be opened
and closed by the command ew | Debug Consol e W ndow. The contents of the debug console
window can be cleared by the commabBdbug | Cl ear Debug Consol e W ndow as shown in
Figure[dD. The colors for background and text as well as tmelavi/s size and font size of the debug con-
sole window can be changed by right clicking the ChIDE icorttmupper left corner of the window and
selecting the menBr oper ti es to make changes. Note that for Windows Vista, you need to hibDE
with the administrative privilege to make such a change.

4.3 Setting and Clearing Breakpoints

Before program execution or during the debugging of an eeelcprogram, new breakpoints can be added
to stop the program execution when they are hit. A breakdoin& line can be added by clicking the left
margin of the line as shown in Figure 6. To clear the breakpaiictk the highlighted red mark on the left
margin of the line. Breakpoints in the debugger can be exadnioy clickingBr eakpoi nt s on the debug
pane selection bar above the debug pane as shown in Eigutree@lebug pane will display the breakpoint
number and its location for each breakpoint. A breakpointtie current line can also be added by clicking
the commandBr eak. on the debug bar It can also be deleted by clicking the cordrGaear on the debug
bar. If no breakpoint has been set, the comm@hdar is non-clickable. A breakpoint cannot be set in a
declaration statement; however, a breakpoint can be setdeclaration statement with initialization such
as

int i = 10;
The program shall not be edited when it is being executed ahdgyjed. Otherwise, a warning message

Warni ng: Any changes nade to the file during debugging will not
be reflected in the current debuggi ng session

will be displayed. After a program is finished its executitrcan be edited. When a program is edited by
deleting or adding new code, the breakpoints set for therprogvill be updated automatically.

Using debug commands inside the debug command pane, whichemilescribed in section~4.6, a
breakpoint can also be set for functions and controllingades,

19

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.4 Monitoring Local Variables and Their Values in the Delftane

BAfunc.c - ChIDE - Professional Edition _In o)X
File Edit Search Wiew Tools Debug Cptions Language Buffers Help
D H (S| 2 R X e Qg ch
| ¥etat $continle ®Abort F=Step Eiext 2=lp S=Down WBreak &Clear || 52Parse P RUn S5top
1func.c |
1 #include <stdio.h>
2
3 int i = 100;
4 int g = 200;
5 -void func(int n) {
(&) int 1 = 1;
7 double a[5] = {1,2,3,4,5};
8
'@ [INg=TEGE
0)
akzs
12 -int main() {
13 int i = 10;
14
15 func (i) ;
16 printf("Done!\n") ;
17 return 0;
18}
28]
« | i3
Locals |\Jariab\es | Stack | Watch | Breakpoints |
Hame Value
ki T
el 1.0000 Z2.0000 3.0000 4.0000 5.0000
n 10
| 2l
debug:
J | 1 e | 2
[li=%co=1 INS (LF) -

Figure 22. Displaying names and values of local variablébércurrently called function.
4.4 Monitoring Local Variables and Their Values in the DebugPane

The commandt ep on the debug bar or under the commadbug on the menu bar can be used to step
into a function. If the function is not in one of files loadedthre buffer already, the file containing the

function will be loaded. At the end of the execution of thegreom, the file loaded during the debugging
will be removed from the buffer. However, if a breakpoint bagn set in the loaded file, the file will be kept

in the buffer when the execution of the program is finished.

When a program is executed line by line by commastdep or Next , names and their corresponding
values of variables in the current stack can be examinecidebug pane by clicking meiuwocal s on the
debug pane selection bar. When control of the program execigtinside a function, the commahdcal s
displays the values of local variables and arguments ofuthetion. When control of the program execution
is not in a function of a script, commarmaecal s displays the values of global variables of the program. As
shown in Figuré22, when prograiunc. c, available in the directorHHOVE/ denps/ bi n, is executed
at line 9, highlighted by the color green, local integer &alesi andn are 1 and 10, whereas the arapf
double type contains 1, 2, 3, 4, and 5, as shown in the debug pan

4.5 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

The user can change the function stack during debugginganitgp Up to its calling function or move
Down to the called function so that the variables within its scopa be displayed in the debug pane or
accessed in the debug command pane. Different colors adeta$gghlight the current line and executing
lines in the calling functions. For example, when clickirgramandUp in Figure[22, the control flow of the

20

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Monitoring Variables in Different Stacks and Their \édun the Debug Pane

~lolx|

Eifunc.c - ChIDE - Professional Edition s
File Edit Search Wiew Tools Debug Cptions Language Buffers Help
D& =@ X o |0 k] th
| Fotat $Continue ®@Abort S=Step Eiext Z=lp SzDown BBreak &Clear || 9zParse * Eun @&top
1 func.c |

ik #include <stdio.h>

2

3 int i = 100;

4 int g = 200;

5 -void func{int n) {

6 int 1 = 1;

7 double a[5] = {1,2,3,4,5};

o@ | g=10;
10 }

12 -int main() {
13 int i = 10;

15 func (i) ;
16 printf("Done!\n") ;
ki return 0;

< |]

Locals |Variab\es | Stack | watch | Breakpolnts |
Hame Value
i 10

< | I

debug>

K — L | K i

209 chars ir 19 lines. Sel: O chars. 4

Figure 23. Displaying names and values of local variablglércalling function.

program moves to its calling functianain() at line 15 as highlighted with the blue color in Figliré 23. The
menuDown as shown in FigurB22 is not clickable. But, the m&umwn is clickable in Figuré23 when the
current stack is moved up. The debug pane at this point gisplee name and value of the variablgthe
only regular variable, in the calling functianain().

Commandst ack displays function, member function, or program name andesponding stack level
in each stack. The current running function has stack leyelttereas level n+1 is the function that has
called a function with stack level n. For example, as showRigure[24, functiorf unc() is called by
functionmain(), which in turn is invoked by the prografrunc. c.

Names and their corresponding values of variables in atlkst@an be displayed by the command
Var i abl es on the debug pane selection bar as shown in Fifjure 25. Steels lare highlighted with
the corresponding colors for the current line and executives in the calling functions in the editing pane
as shown in FigurE23. In FiguEel25, the program is stoppeida@®d. Names and values of local variables
inside functions unc() andmain() as well as global variables are displayed in the debug paseona
can see, before line 9 is executed, the value of the globalhtag is 200.

When the command

D spl ay special variables in debug pane for Locals and Vari abl es

in the debug menu shown in Figuré 20 is clicked, names aneésalfispecial variables such asf unc__
will be displayed in the debug pane for commahdsal s andVari abl es.

21

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Monitoring Variables in Different Stacks and Their \édun the Debug Pane

BXfunc.c - ChIDE - Professional Edition _ ol X
File Ecit Search View Tools Debug Options Language Buffers Help
DR S| BE X|o = |4 ab th
| ®otat $continue ®Abort S=Step Ehlext 2=p S=Down WBreak &Clear || $=Parce P RLm @Siop
1func.c |

1 f#include <stdio.h>

double a[5] = {1,2,3,4,5};

L

'3 int i = 100;

4 int g = 200;

5 -void func(int n) {
B int i = 1;

"".

@

L}

= e

—int main() {
int 1 = 10;

func (i) ;
printf("Done!\n") ;
return 0;

| 2
Locals | Variables Stack |watch| Breakpoints |
Stack Level Stack Name
0 fune ()
i main ()
2 func.c
| | H
debug:
| 1] e m
li=9'co=1 IN3 (LF) 7

Figure 24. Displaying different stacks at the executingipoi

22

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Monitoring Variables in Different Stacks and Their \édun the Debug Pane

BXfunc.c - ChIDE - Professional Edition

File Edit Seach View Tools Debug Options Language Buffers Help

D@ W B[S % B@A X[~[Qat|th

| oot Boortinue @Abort S=Sten Ehext 2Elp S=Down WBresk &Clear || f2Pare P RUn SEiop

1func.c |
1 #include <stdio.h>

1
1

3t

. int i = 100;
 int g = 200;

. —void func(int n) {

! int i = 1;

double a[5] = {1,2,3,4,5};

- int main() {
| int i = 10;

func (i) ;
printf("Done!\n") ;
return 0;

i ik
a 1.0000 2.0000 3.0000 4.0000 5.0000
in 10

10

=
i 100
g 200
func () 0x02175DES
fmain iy 0x02184520
< | I
=8 co=1 ING (LF) 7

Figure 25. Displaying names and values of all variableslistatks .

23

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

@R func.c - ChIDE - Professional Edition B = ol x|
File Edit Search View Tools Debug Options Language Buffers Help
D@ G| S » BB X| e o | Q ok Ch
| ¥start ¥oontinle ®Abot S=Step Eplext Z=lp S=Down WMBreak GcClear || $2Parse P Run @5top
1funcs|
1 #include <stdio.h> -
<| | »
Locals |Variab|es| Stack | Watch | Breakpoints |
Hame Value
< i i3
debug> help
kEAAFFAAEAE ARSI AE AL A AES Debug Meny *rretkrthhbhhhbhhrrhhhah
start [args]: start the program with debugging
run [args]: run the program without debugging
step: step into a function or next line
next: step over a function or next line
cont: continue till hitting a breakpoint or ends
up: change stack to the calling function
down : change stack to the called function
stack: display stack names in all stacks
locals: display varlables and wvalues within its scope
variables: display varilables and values in all stacks
watch expre: add an expression into the watch list
reEmove exXpr: remove an expression from the watch list
remove: remove all expressions from the watch list
stopat filename # [condl: set a new breakpoint in a file at line #
stopin funcname [cond]: set a new breakpoint in a function
stopvar varname [cond]: set a new breakpoint for a controlling wvariab
clearline filename #: clear a breakpoint in a file at line #
clearfunc funcname: clear a breakpoint for a function
clearvar varname: clear a breakpoint for a wvariable
clear: clear all breakpoints
help: display this debug menu
assign var=expr: assign a value to a wariable
call funci): call a function
print expr: print out the value of an expression
eXpr: print out the wvalue of an expression
abort: abort the debugger
debug:>
il | 2
209 chars it 19 lines. Sel: O chars, 4

Figure 26. Debug commands in the debug command pane.
4.6 Using Debug Commands in the Debug Command Pane

Many debug commands inside the debug command pane arebéallaing the debugging of a program.
A prompt

debug>

inside the debug command pane indicates that the debuggeady to accept debug commands. Type
the commandel p, it will display all available commands as shown in Figliré dZéie menu on the left
before a colon shows a command and the description on thieesighains the action taken for the command.
All commands on the debug bar have corresponding commarnitiésimteractive debug command pane.
However, some features are available only through the debognand pane.

The variables, expressions, and functions can be mangoulay commandsssi gn, cal |, and
pri nt. The commandssi gn assigns a value to a variableal | invokes a function, angr i nt prints
out the value of a variable or expression including functidhis invalid to print an expression of void type
including a function with return type void. One can also jiypie an expression, the value of the expression
will be displayed. If the expression is a function with th&uraing type of void, only the function is called.
For example, commands

24

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

E3func.c - ChIDE - Professional Edition _|o| x|
Flle Edit Search View Tools Debug Options language Buffers Help
D@k B3| % 2@ X = |Q o th
| Fetart $Continue @Abort S=Step [Epext 2:lp S=Down WBreak Gclear || 9=Parse P Eun S5top
1func.c |
i #include <stdio.h>
2.
3 int i = 100;
4 int g = 200;
5 -void func(int n) {
& int i = 1;
7 double a[5] = {1,2,3,4,5};
8
9
10
il
12 - int main() {
13 int i = 10;
14
15 func (i) ;
16 printf ("Done!\n") ;
17 return 0;
18 }
19
< | 2l
Locals |Variab|e5| Stack, | Watch| Breakpoints|
MName Value
1 1
a 1.0000 2.0000 2.0000 4.0000 5.0000
mn 10
« 2
debug> a
a 1.0000 2.0000 3.0000 4.0000 5.0000
debug> 1
i 1
debug> Z*g
2 kg 400
debug>
| 1| S | 2l
209 chars in 19 lines. Sel; O chars. 4

Figure 27. Using debug commands in the debug command pane.

debug> assign i =2*10
debug> cal |l func()
debug> print

20

debug> 2*i

40

debug>

assign the variable with the value of 10, call functiohunc() , and print out the value of the expression
2*i when the variable is valid in its current scope. As another example, when @nogrunc. ¢ is
executed and stopped at line 9 shown in Fidule 27, the valuesiablesa andi as well as the expression
2* g can be obtained by typing corresponding commands in thegdetommand pane.

The commandst art begins debugging a program. The optional command line aggtsrfor the
commandst art andr un are processed and passed to the arguments for the funadimg). For example,
to run progranC: \ Ch\ denos\ bi n\ conmandar g. ¢ shown in Figuré1l7, the debug command

debug> start -0 optionl -v option2 "option3 with space"

will assign the strings" C. \ Ch\ denos\ bi n\ commandarg.c", "-0", "optionl", "-v",
"option2",and"option3 with space" toelementar gv[0] ,argv[1] ,argv[2] ,argv[3],

25

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

ar gv[4] , andar gv[5] , the argumenar gv of the main function
int main(int argc, char *argv[])

of the Ch scriptonmandar g. c, respectively. The output on the Debug Console Window isl@irto that
displayed in the output pane in Figlird 17. A command line ment with space should be enclosed within
two double quotation marks as shown above for the striogt i on3 wi t h space”.

The program will stop when a breakpoint is hit. The commanad will execute the program without
debugging by ignoring breakpoints. Similar to commanddherdebug bar, the user can execute the program
line by line either by commandt ep or next. The commandt ep will step into a function whereas
the commandhext will step over the function to the next line. During the debimng, the commandont
can be invoked to continue the execution of the programttiilits a breakpoint or the program ends. The
user can change the function stack during debugging. It campgo its calling function or move down to
the called function by the commandg anddown, respectively, so that the variables within its scope can
be accessed in the debug command pane. The function or pragames in all stacks are displayed by
the commandgt ack. Names and their corresponding values of variables in thewustack are displayed
by the command ocal s. Commandvar i abl es displays names and values for all variables within its
scope in each stack.

The commandavat ch adds an expression, including a single variable, into afigtatched expressions.
Watched expressions can be added before or during exeaitioprogram. An expression can be removed
from the list of the watched expressions by tlemove expr command. The commandenove removes
all expressions in the watched list. For example, commamtisei debug command pane

debug> watch 2*g
debug> watch i

add expressior2* g and variable i to a list of watched expressions as shown inrEf@3. When the
program is stopped at a breakpoint or stepped into nexinséait the values of these watched expressions
can be viewed in the debug pane by clicking the commé&tdc h on the debug pane selection bar as shown
in Figure[Z8.

Before the program execution or during the debugging of @cw@ed program, new breakpoints can be
added to stop the program execution. A breakpoint can be besed on three specifications: file name and
line number, function, and controlling variable. When ad@oint is setup in a function, the program will
stop at its first executable line of the function. When a bpeak is setup for a variable, the program will
stop when the value of the variable changes. Each breakpamhave an optional conditional expression.
When a breakpoint location is reached, the conditionalesgion is evaluated if it exists. The breakpoint
is hit only if the expression is either true or has changedctvinieeds to be specified when the breakpoint
was added. By default, the breakpoint is hit only if the egpien is true. Commansdt opat sets a
new breakpoint specified by a file name and line number in theexuent arguments. The program breaks
execution when it reaches this location. Commamaepi n sets a new breakpoint for a function. The
program breaks execution when it reaches the first exeeutld of the function. Commansit opvar
sets a new breakpoint for a controlling variable. The vaeiabevaluated while the program is running. The
program breaks execution when the value of the variableggsmanNhen each of these command is invoked,
a breakpoint is appended to the list of breakpoints. Theoopgticonditional expression and triggering
method for each breakpoint are passed as the last two argsimiethese commands. For example, the
syntaxes for setting a breakpoint in a file with a completé paid line number are as follows.

debug> stopat filenanme #
debug> stopat filenanme # condexpr
debug> stopat filename # condexpr condtrue

26

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

ZXfunc.c - ChIDE - Professional Edition =lalx|

File Edit Search Wiew Tools Debug Options Language Buffers Help

D@ HE S| 5 BR X | o & |0 a ch

| Fetat $Continle ®@Abort S=Step BEMext 2=lp S=Down BBreak &Clear || fzParse P Eun Bstop
1 func.c |

A #include <stdio.h>
=
3 int i = 100;
4 int g = 200;
5 -void func(int n) {
(&} int i = 1;
7 double a[5] = {1,2,3,4,5};
12 -int main() {
13 int 4= 103
14
i func (i) ;
16 printf ("Done!\n") ;
17 return 0;
18 }
18
< I 2
Locals | Variables | Stack Watch IBreakDOimtS |
Expression value |
2% 400
i 1
debug> watch 2*g
debug> watch i
debug>
4 | L3 | K i
funmc.c @ 11/17/2009 - 12:19:40 AM | o

Figure 28. Setting watch expressions and variables inbielelébug command pane to display their values
in the debug pane.

The symbok# should be substituted by a line number. When a breakpoiatitwt is reached, the optional
expressiorcondexpr is evaluated. If the argumenbndt r ue is true or missing, the breakpoint will be
hit if the value for the expression is true; otherwise, thealipoint will be hit if the value for the expression
has changed. For example, the command

debug> stopat C./Ch/denos/bin/func.c 6
sets a breakpoint in fileunc. c located at the directory C:/Ch/demos/bin at line 6. The camn
debug> stopat C./Ch/denos/bin/func.c 6 i+ 1

sets a breakpoint in fileunc. c at line 6. When the breakpoint location in file func.c at lines 6eached,
the expressiom +j is evaluated and the breakpoint will be hit if the value fag thxpression +j is true.
The above command is the same as

debug> stopat C./Ch/denbs/bin/func.c 6 i+
The command

debug> stopat C./Ch/denbs/bin/func.c 6 i+ O

27

5 GETTING STARTED WITH CH COMMAND SHELL

Ch

Figure 29. A Chicon on a desktop in Windows, Linux, and Mac QS X

Ch Professional _ ol %]

Ch
Professional edition, version 6.1.0.13631 :l
(C) Copyright 2001-2008 SoftIntegration, Inc.
http://www.softintegration.com
C:/Documents and Settings/Administrator> printf(“Hello, world")
Hello, world
C:/Documents and Settings/Administrator>

«| | AV
Figure 30. A Ch command shell.

sets a breakpoint in fileunc. ¢ at line 6. When the breakpoint location in fifaunc. ¢ at line 6 is
reached, the expressiorj is evaluated and the breakpoint will be hit if the value fa #xpressiof +j
has changed. On the other hand, commaridear | i ne, cl ear f unc, andcl ear var with proper
arguments remove a breakpoint of line, function, and végidype in the list, respectively. Command
cl ear removes all breakpoints in the debugger.

If a program execution has failed and is taking too long to jglete, then the commarabort can be
used to stop the program.

The debug command pane can be cleared by clickihg the command
View | O ear Debug Command Pane as shown in Figure10.

5 Getting Started with Ch Command Shell

Ch can be used as a command shell in which commands are gdcdske other commonly used shells
such as the MS-DOS shell, Bash-shell, or C-shell, commaadse executed in a Ch shell. Unlike these
conventional shells, expressions, statements, funcdodgrograms in C and C++ can be readily executed
in a Ch shell.

A Ch shell can be launched by running the commahd In Windows, Linux, and Mac OS X, a Ch
command shell can also be conveniently launched by clickiaged-coloredCh icon, shown in Figurg29,
on the desktop or on the tool bar of the ChIDE.

Assume the user account is the administrator, after a ChisHalnched in Windows, by default, the
screen prompt of the shell window becomes

C. / Docunents and Setti ngs/ Admi ni strator>

whereC: / Docunment s and Setti ngs/ Admni ni strat or is the usershome directoryon the desk-

top as shown in Figude_B0. The colors of the text and backgt@swell as the window size and font size

of the shell window can be changed by right clicking the Cimiabthe upper left corner of the window, and
selecting the menBr operti es to make changes. Note that for Windows Vista, you need to hibDE

with the administrative privilege to make such a change. dikplayed directoryC: / Docunent s and

Set ti ngs/ Admi ni str at or is also called theurrent working directory If the user account is not the
administrator, the account narA@ministratorshall be changed to the appropriate user account name. The
prompt indicates that the system is in a Ch shell and is reaéygdept the user’s terminal keyboard input.
The default prompt in a Ch shell can be reconfigured. If theitimpped in is syntactically correct, it will

28

5 GETTING STARTED WITH CH COMMAND SHELL
5.1 Portable Commands for Handling Files

Table 4. Portable commands for handling files.

Command Usage Description
cd cd change to the home directory
cddir change to the directorgir
cp cpfilel file2 copyfilelto file2
Is Is list contents in the working directory
mkdir mkdir dir create a new directorgir
pwd pwd print (display) the name of the working directory
rm rm file removefile
chmod chmod +xfile change the mode dile to make it executable
chide chidefile.c launch ChIDE for editing and executitfige.c

be executed successfully. Upon completion of the executiensystem prompt will appear again. If an
error occurs during the execution of the program or exppesshe Ch shell prints out the corresponding
error messages to assist the user in debugging the program.

All statements and expressions of C can be executed intariycin a Ch command shell. For example,
the outputHel | o, wor | d can be obtained by calling the functigmintf () interactively as shown below
and as seen in FiguEel30.

C:. / Docunents and Settings/Administrator> printf("Hello, world")
Hell o, world

In comparison with FigurE_30, the last pront/ Docunent s and Setti ngs/ Adm ni strator>

is omitted to save the space in the presentation of this bdote that the semicolon at the end of a statement
in a C program is optional when the corresponding statenseexecuted in command mode. There is no
semicolon in calling the functioprintf () in the above execution.

5.1 Portable Commands for Handling Files

At the system prompt, not only C programs and statements, but also any other coasr(@uch apwd
for printing the current working directory) can be executirthis scenario, Ch is used as a command shell
in the same manner as MS-DOS shell in Windows.

Commands can be executed in a Ch command shell or in a Ch prograere are hundreds of com-
mands along with their respective online documentatiornegystem. No one knows all of them. Every
computer wizard has a small set of working tools that are afiéde time, plus a vague idea of what else is
out there. In this section, we will describe how to use thetrmosymonly used commands, listed in TaHle 4,
for handling files through examples. It should be emphasiggin that these commands running in the Ch
shell are portable across different platforms such as Wisdainux, or Mac OS X. Using these commands,
a user can effectively manipulate files on the system to ruroGrams.

Assume that Ch is installed i@ / Ch in Windows, the default installation directory. The cutremrk-
ing directory isC. / Docunent s and Setti ngs/ Adm ni strat or, which is also the user's home
directory. The application of portable commands for filediang can be illustrated by interactive execution
of commands in a Ch shell as shown below.

C./ Docunents and Settings/Adm nistrator> nkdir c99

C./ Docunents and Settings/Adm nistrator> cd c99

C./ Docurents and Settings/Adm ni strator/c99> pwd

C./ Docunents and Settings/Adm ni strator/c99

C./ Docunments and Settings/Adm nistrator/c99> cp C:/Ch/denos/bin/hello.c hello.c
C./ Docunments and Settings/Adm nistrator/c99> |s

29

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, anddfukdes in Ch

hello.c
C:./ Docunments and Settings/Adm nistrator/c99> chide hello.c

As shown inUsagein Table[4, the commanehkdir takes one argument as a directory to be created. We
first create a directory callet®9 using the command

nkdir c99

Then, we change to this new directd@y/ Docunent s and Setti ngs/ Adm ni strator/c99 us-
ing command

cd c99
Next, we display the current working directory with the coamnd
pwd

A C programhel | 0. ¢ shown in FiguréR2 in the director@: / Ch/ denps/ bi nis copied to the working
directory with the same file name using the command

cp C/Ch/denbs/bin/hello.c hello.c
Files in the current directory are listed using the command
l's

At this point, there is only one file hello.c in the directory
C./ Docunents and Settings/Adm ni strator/c99. Itis recommended that you save all your
developed C programs in this directory so that you may eéisitiall programs later on. Finally, program
hel | o. ¢ is launched by the command

chide hello.c

to be edited and executed in ChIDE as shown in Fifllire 2. Foassi@om presentation, sometimes, it is
more convenient to open multiple source files by a single canthas shown below:

> chide filel.c file2.c header.h

To use a command dealing with a path with white space, the mpeghls to be placed inside a pair of
double quotation marks, as shown below, to removehidel o. c.

> rm"C./Docunents and Settings/Adm nistrator/c99/ hello.c"

5.2 Setup Search Paths for Commands, Header Files, and Fumah Files in Ch

When a command is typed into a prompt of a command shell fazudan, the command shell will search
for the command in prespecified directories. In a Ch shedl sifstem variablepath of string type contains
the directories to be searched for the command. Each diyeistseparated by a semicolon inside the string
_path. When a Ch command shell is launched, the system variphbté contains some default search paths.
For example, in Windows, the default search paths are

C./Ch/bin;C/Ch/sbin;C /Ch/tool kit/bin;C/Ch/tool kit/sbin;C /WNDOW5; C./ W NDOWN5/ SYSTEM32;

30

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, anddfukdes in Ch

The user can add new directories to the search paths for thenaad shell by using the string func-
tion stradd() in the startup file, which will be discussed in detail a litikder. This function adds argu-
ments of string type and returns it as a new string. For exatpe directoryC. / Docunent s and
Set ti ngs/ Admi ni strator/ c99is not in the search paths for a command. If you try to run @ogr
hello.c in this directory when the current working directory is
C./ Docunents and Settings/ Adm ni strator, the Ch shell will not be able to find this pro-
gram, as shown below, and give two error messages.

C. / Docunents and Settings/Adm nistrator> hello.c
ERROR: variable "hello.c’ not defined
ERROR: command ' hello.c¢c’ not found

When Ch is launched or a Ch program is executed, by defauwitjliexecute the startup filechrc in
Unix such as Linux and Mac OS X achrc in Windows in the user’s home directory if the startup file
exists. In the remaining presentation, it is assumed thds@bked in Windows with a startup filehrc in
the user’s home directory. This startup file typically sqisthe search paths for commands, header files,
function files, etc. In Windows, a startup filehrc with default setup is created in the user’s home directory
during installation of Ch. However, there is no startup fil@iuser’'s home directory in Unix by default. The
system administrator may add such a startup file in a usenwtirectory. However, the user can execute
Ch with the option d as follows

ch -d

to copy a sample startup file from the direct@yHOVE/ conf i g/ to the user’s home directory if there is
no startup file in the home directory yet. Note tRdHOVE is not the string' CHHOVE" , instead it uses the
file system path under which Ch is installed. For example,ddgut, Ch is installed ifC: / Ch in Windows
and/ usr /| ocal / chin Unix. In Windows, the command in a Ch shell below

C. / Docunents and Settings/Adm nistrator> ch -d

will create a startup file _chrc in the user's home directory
C./ Docunents and Settings/Adm ni strator. This local Ch initialization startup filechrc
can be opened by the following command on the menu bar

Options | Open Ch Local Startup File

to edit the search paths in ChIDE, as shown in Fiduie 31. lat,ithe above commanch - d will also
create an icon for Ch on the desktop. If Ch is installed with#JE, an icon for ChIDE will also be created
on the desktop.

To include the directoryC: / Docunent s and Setti ngs/ Adm ni strator/c99 in the search
paths for a command, the following statement

_path = stradd(_path, "C:/Docunents and Settings/Adm nistrator/c99;");

needs to be added to the startup fidarc in the user’s home directory so that the comméwed | 0. c
in this directory can be invoked regardless of what the ctirveorking directory is. After the directory
C: / Docunment s and Settings/Adm ni strator/c99 has been added to the search patiath,
you need to restart a Ch command shell. Then, you will be abéx¢cute the prograimel | 0. ¢ in this
directory as shown below.

C. / Docunents and Settings/Adm nistrator> hello.c
Hell o, world

31

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, anddfufdes in Ch

&%_chrc - ChIDE - Professional Edition =10l

File Edit Search View Tools Debug Options Language Bufers Heln
D E & ae x| o Qc AlweysOnTop

| Wstart $Coriinue @Abort SsStep [Open Files Here h St
1 _chrc | Wrap

1 // Note: This file is cal Wrap Output ked.

2 // This file must be loca Read-Cnly ective

3 J/REHEEH R R R R HEGH#

4 // umask(0022) : Line End Characters 4

5 // warning = 3; // p ConvertLine End Characters k warr

—6,- ﬁ ;EZ:IEE:;;C[;'(i N ; Change Indentation Settings. ., Cirl+3hift+1

8 // path = stradd(path, " UseMonospaced Font Cirl+F11

a // _ppath stradd_{_ppath.

Open Ch Local Startup File
Open Ch System Startup File

10 //_fpath

. stradd(_fpath,
IE //_ipath

stradd(_ipath,
- ’ 2 traddc{lalpa t';h Open ChIDE User Abbreviations File
//_pathext = stradd(_pa Open ChIDE Global Abbreviations File

15 /* for Web-Based Enterpri Open ChIDE Local Options File o5
16 /f _path = stradd (_[:a th, Open ChIDE User Options File
B~ S5 smes S Sun A Open ChIDE Global Options File

18 //_path = stradd(_path,

14 /* for winword.exe, you n QOpen ChIDE Locals File pn 11

20 //_path = stradd(_path, " i

21 Open CfCh/C++ Property File

22z - /* .NET 2008 Open CS5 Property File

23 _bath = stradd(_path, "C: gpen HTML /XML Property Flle vC/b:

24 _path = stradd(_path, "C: Open SOL Property File COMMC

25 _path = stradd(_path, "C: Open TeX Froperty File a/bin

26 putenv(stradd("LIB=C:/Pzo - Lib; "

97 "e:/Program Files/ Open Others Property File

28 "C:/Program Files/Microsoft Visual Studio 9.0/atlmfec/lib;", getem

24 Yy

30 putenv (stradd ("INCLUDE=C:/Program Files/Microsoft Visual sStudio 9.0/vVvC/ir™
4| | »
|12064 chars in 249 lines. Sel: O chars. 4

Figure 31. Open the local Ch initialization startup file fditag.

In Unix such as Linux and Mac OS X, the search paths for comséyddefault do not contain the
current working directory. To include the current workinigedtory in the search paths for a command, the
following statement

_path = stradd(_path, ".;");
needs to be added in startup filechrc in the user's home directory. Function call
stradd(_path, ".;") adds the current directory represented by ’.’ to the systegnch pathspath.

Similar to_path for commands, the header files in Ch are searched in direstspecified in the system
variable_ipath. Each path is also delimited by a semicolon. For examplestitement below

_ipath = stradd(_i path, "C./Docunents and Setting/Adm nistrator/c99;");

adds the directoryC: / Docunent s and Setti ng/ Adni ni strator/c99 to the search paths for
header files included by the preprocessing directimelude such as

#i ncl ude <headerfile. h>
One can also add this directory to the search pdpiath for function files by the statement

_fpath = stradd(_fpath, "C. /Docunents and Setting/Adm nistrator/c99;");

A function file contains the function definition, which wiltldescribed in sectidn®.5.

32

5 GETTING STARTED WITH CH COMMAND SHELL
5.3 Interactive Execution of C/Ch/C++ Programs

5.3 Interactive Execution of C/Ch/C++ Programs

It is very simple and easy to run C programs interactivelyhautt compilation in a Ch shell. For example,
assume thaC: / Docunment s and Settings/ Adni ni strator/c99 is the current working direc-
tory as presented in sectibnb.1. The progtaeh | 0. c in this directory can be executed in Ch to get the
output ofHel | o, wor | d as shown below.

C. / Docunents and Settings/Adm nistrator/c99> hello.c
Hell o, world

C. / Docunents and Settings/Adm nistrator/c99> _status
0

The exit code from executing a program in a Ch command shk#ps in the system variablestatus
Because the prograimel | o. ¢ has been executed successfully, the exit code is 0 as shothe above
output whenstatusis typed in the command line.

In Unix such as Linux and Mac OS X, in order to readily use the@pmmbhel | 0. ¢ as a command,
the file has to be executable. The commahthod can change the mode of a file. The following command

chnod +x hello.c

will make the progranhel | 0. ¢ executable so that it can run in a Ch command shell.

5.4 Interactive Execution of C/Ch/C++ Expressions and Staments

For simplicity, only the prompt in a Ch command shell will be displayed in the remaining pneseon. If
a C expression is typed in the command shell, it will be evallidy Ch and the result then will be displayed
on the screen. For example, if the expresdief3* 2 is typed in, the output will be 7 as shown below.

> 1+3*2
7

Any valid C expression can be evaluated in a Ch shell. Thezefoh can be conveniently used as a calcu-
lator.

As another example, one can declare a variable at the prardghean use the variable in the subsequent
calculations as shown below.

>int i

> sizeof (int)

4

> i =30

30

> printf("w", i)
le

> printf("%", i)
11110

> i = 0bl11110

30

> i = Ox1E

30

33

5 GETTING STARTED WITH CH COMMAND SHELL

5.4 Interactive Execution of C/Ch/C++ Expressions andeBtents

> =-2

-2

> printf("%", i)
11111212112211211221121122112111110
> printf("982b", 2)
00000000000000000000000000000010

In the above C statements, varialbles declared as int type with 4 bytes. Then, the integer valué8

i is displayed in decimal, hexadecimal, and binary numbetse ifitegral constants in different number
systems can also be assigned to varidbés seen above. Finally, the two's complement representafio
the negative number2 is also displayed. Characteristics for all other data typ&3scan also be presented

interactively.

By default, a value of float or double type is displayed witlo tar four digits after the decimal point,

respectively. For example,

> float f = 10
> 2*f

20.00

> double d = 10
> d

10. 0000

All C operators can be used interactively as shown below.

> int i=0b100, j = 0b1001
> i << 1

8

> printf("%", i]j)
1101

The concept of pointers and addresses of variables carubt&railed as shown below.

> int i=10, *p
> &
leddf O
>p = &
leddf O

> *p

10

> *p = 20
20

>

20

In this example, the variable of pointer to int points to the variable. The working principle for pointer to
pointer can also be interactively illustrated in the samamea In the next example, the relation of arrays

and pointers is illustrated as follows:

34

5 GETTING STARTED WITH CH COMMAND SHELL
5.4 Interactive Execution of C/Ch/C++ Expressions andeBtents

> int a[5] = {10, 20, 30, 40,50}, *p
> a
1eb438

> &a[0]
1eb438

> a[1]

20

> *(atl)
20

>p = atl
leb43c

> *p

20

> p[0]

20

Expressionga[1], *(a+l1l), *p, andp[O] all refer to the same element. Multi-dimensional arrays
can also be handled interactively. The boundary of an agapécked in Ch to detect potential bugs. For
example,

> int a[5] = {10, 20, 30, 40, 50}

> a[-1]

WARNI NG subscript value -1 less than lower limt O
10

> a[5]

WARNI NG subscript value 5 greater than upper limt 4
50

> char s[5]

> strcpy(s, "abc")

abc

> s

abc

> strcpy(s, "ABCDE")

ERROR: string length sl is less than s2 in strcpy(sl, s2)
ABCD

> s

ABCD

The allowed indices for arrag of 5 elements are from 0 to 4. Arraycan only hold 5 characters including
a null character. Ch can catch bugs in existing C code retatéte array boundary overrun such as these.
The alignment of a C structure or C++ class can also be exahsisshown below.

> struct tag {int i; double d;} s
> s.i =20

20

> s

=20

.d = 0.0000

35

5 GETTING STARTED WITH CH COMMAND SHELL
5.5 Interactive Execution of C/Ch/C++ Functions

> si zeof (s)
16

In this example, although the sizes of int and double are 48amespectively, the size of structusewith
two fields of int and double types is 16, instead of 12, for thappr alignment.

5.5 Interactive Execution of C/Ch/C++ Functions

A program can be divided into many separate files. Each filsistsnof many related functions, which can
be accessible to any part of a program. All functions in théa@dard libraries can be executed interactively
and can be used inside user defined functions. For examptee interactive execution:

> srand(time(NULL))

> rand()

4497

> rand()

11439

> doubl e add(doubl e a, double b) {double c; c=a+b+sin(1.5); return c;}
> double c

> ¢ = add(10.0, 20)

30. 9975

The random number generator functi@md() is seeded with a time value srand(time(NULL) . Function
add() which calls type-generic mathematical functin() is defined at the prompt and then used.

A file that contains more than one function definition is ulgualffixed with. ch to identify itself as
part of a Ch program. One can create a function file in a Ch progring environment. Aunction file in
Ch is a file that contains only one function definition. The easha function file ends inchf, such as
addi ti on. chf . The names of the function file and function definition indige function file must be the
same. The functions defined using function files are treatefithey were system built-in functions in Ch.

Similar to_path for commands, a function is searched based on the searchipdtte system variable
_fpath for function files. Each path is delimited by a semicolon. Byadilt, the variablefpath contains the
pathsl i b/1ibc, lib/libch, lib/libopt, andlibch/numreri cinthe home directory of Ch.
If the system variablefpath is modified interactively in a Ch shell, it will be effectivenly for functions
invoked in the current shell interactively. For runningigts, the setup of function search paths in the current
shell will not be used and inherited in subshells. In thisecéise system variabldpath can be modified in

startup file_chrc in Windows or.chrc in Unix in the user's home directory.

For example, if a file namedddi t i on. chf contains the program shown in ProgrBin 1, the function
addi ti on() will be treated as a system built-in function, which can b#edato compute the sum
a + b of two input arguments: and b. Assume that the function filaddi ti on. chf is located at
C./ Docunents and Settings/Adm nistrator/c99/addition. chf, the directory
C: / Docunment s and Settings/Adm ni strator/ c99should be added to the function search path
in the startup filechrc in Unix or _fpath in Windows in the user’'s home directory with the followingitst-
ment.

_fpath=stradd(_fpath, "C /Docunents and Settings/Adm nistrator/c99;");

Functionaddi ti on() then can be used either interactively in command mode asrsheiaw,

>int i =9
> i = addition(3, i)
12

36

5 GETTING STARTED WITH CH COMMAND SHELL
5.6 Interactive Execution of C++ Features

/* File: addition.chf

A function file with file extension .chf */
int addition(int a, int b) {

int c;

c =a+ b;

return c;

Program 1. Function filaddi t i on. chf.
/* File: programc
Program uses function addition() in function file addition.chf */
#i ncl ude <stdi o. h>

/* This function prototype is optional when function addition() in
file addition.chf is used in Ch */
int addition(int a, int b);

int main() {
int a=3, b =4, sum

sum = addition(a, b);
printf("sum= 9%\n ", sum;
return O;

Program 2. A program using function figeldi t i on. chf .

or inside programs. In Progralh 2, the functiaddi ti on() is called without a function prototype in
themain() function so that the function prototype defined inside thecfion fileaddi t i on. chf will be
invoked. If the search paths for function files have not beepgrly setup, a warning message such as

WARNI NG function 'addition()’ not defined

will be displayed, when the functioaddi t i on() is called.

When a function is called interactively in a Ch shell, thediion file will be loaded. If you modify
a function file after the function has been called, the sulmeigcalls in the command mode will still use
the old version of the function definition that had been lehddo invoke the modified version of the
new function file, you can either remove the function defimitin the system using the commareanvar
followed by a function name. or start a new Ch shell by tygiha@t the prompt. For example, the command

> renvar addition
removes the definition for functioaddi t i on(). The commandemvar can also be used to remove a

declared variable.

5.6 Interactive Execution of C++ Features

Not only C programs can be executed in Ch, but also classesamd C++ features are supported in Ch as
shown below for interactive execution of C++ code.

> int i

> cin >> |
10

> cout << i

37

7 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

10

> class tagc {private: int mi; public: void set(int); int get(int &;}
> void tagc::set(int i) {mi = 2*i;}

> int tagc::get(int &) {i++;, return mi;}
> tagc c

> c.set (20)

> c.get (i)

40

>

11

> si zeof (tagc)

4

The input and output can be handled usiimgandcoutin C++. The public methodagc: : set () setsthe
private membem.i , whereas the public methddagc: : get () gets its value. The argument of method
tagc: : get () is passed by reference. The size of the ctasgc is 4 bytes which does not include the
memory for member functions.

6 Interactive Execution of Commands in the Output Pane

Binary commands or C/C++ programs can also be executechatiezly inside the output pane as shown
in Figure[32. In Figur&32, the progranel | o. c is executed first in the output pane. Then, the command
pwd prints the current working directory. The commadadists files and directories in the current working
directory. Options of a command can also be provided. Fomeka the commants can invoked in the
form of

s -F

to list directories with a forward slash at the end.
To use a command with a complete path which containing a vepiéee, the path needs to be placed
inside a pair of double quotation marks, as shown below.

> "C./Docunents and Settings/Adm ni strator/c99/ hello.c"

How to execute /C/Ch/C++ programs with command line argumisrdescribed in sectidn2.5.

7 Compiling and Linking C/C++ Programs in ChIDE

ChIDE can also compile and link an edited C/C++ program ingtiéing pane using C and C++ compil-
ers, then execute the created binary executable prograndefwlt, the ChIDE is configured during the
installation to use the latest Microsoft Visual Studio .NiB3talled in your Windows to compile C and C++
programs. The environment variables and commands for theaV/Etudio compiler can be modified in the
individual startup configuration filechrc in the user’'s home directory, which can be opened for ed#ing
shown in Figuré_31. In Linux and Mac OS X x86, ChIDE uses coerpilGNU gcc and g++ to compile C
and C++ programs, respectively. The default compiler cachlaeged by modifying the C/Ch/C++ property
file cpp. properti es which can be opened by the commapuat i ons | cpp. properties.
The commandlool s | Conpi | e as shown in FigurEZ33 can be used to compile a program. The

output and error messages for compiling a C or C++ progrardiaptayed in the output pane of the ChIDE.

38

7 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Elhello.c - ChIDE - Professional Edition A
File Edit Search Wiew Tools Debug Cptions Language Buffers Help

DS L ER X | Qo th
| Fstart Brontine ®Abot S=Step Biext 2=lp S=Down BBreak &Clea || $=Parse P Run @&top

~lolx|

1 hello.c |
1 -/* FPile: hello.c
7 Print 'Helleo, world' on the screen. */
3 #include <stdio.h>
4
5 int main()
6 -
7 printf ("Helle, world\n") ;
A return 0;
9 }
]

i

4

hello.c

>ch -u hello.c
Hello, world
>Exit code: 0
pwd

>pwid
C:/Ch/demnos/bin
>Exit code: 0
1ls -F

»1s -F

arg.ch

cdemo
cdemo_ch/

Commandarg.d ind
4| | »

Mowy is; Date=12/5/2009 Time=8;37,00 PM 4

LDl

Figure 32. Executing commands inside the output pane.

In Windows, compiling a program will create an object filemiile extension .obj. The object file can be
linked using the comman@ool s | Li nk to create an executable program. The executable in Windows
has file extension .exe.

If a make file makefile or Makefile is available in the curremediory, the command@ool s | Buil d
will invoke the make file to build an application. A make filencalso be invoked by right clicking the file
name on the file tab, then clicking the commamek e in Linux or Mac and the commanuake or nnake
in Windows as shown in Figufe134.

When ChIDE is used to edit a make file, the syntax will be higftied. Because the tab character is
reserved as a special character to begin a command for sokeeaommand, it will be preserved and not
replaced with white spaces. A file with the file extensiarak or with the following file name is recognized
as a make file in ChIDE:

makefil e

makefile.wn
makefile win
makefile. Wn
mekefile Wn
Makefil e

Makefile.w n
Makefile w n
Makefile. Wn
Makefile Wn

The commandool s | Go will execute the developed executable program.

39

7 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Blhello.c - ChIDE - Professional Edition
File Edit Seach Wiew @ Tools Debug Cptions Lamguage Buffers Help

-lo|x|

D S| 28 Pase

| ¥start Boontinue @4 Run F2 ok UClear || $2Parse » Run @Stop
1 hello.c |
1 - /* File: hell
2 Print 'Hel
3 #include <stec
4
2_ . J{'m' main() Siop Beclting
7 printf ("H Indent Crl+0
8 return 0;
9 } Command Line Argurments
10 =
' Next Error Message F4

Previous Error Message Shift+F4
. |

>ch ¢l -D_USE_MATH DEFINES -D CRT SECURE_NO DEFRECATE /EHsc -c hello.c
Microsoft (R} 32-bit C/C++ Optimizing Compiler Version 14.00.50727.762 for
Copyright {C) Microsoft Corporation. All rights reserved.

hello.c

>Exit code: 0

< |
li=1 ca=1 INS (LF)

80x86

a=

Figure 33. Compiling a C/C++ program.

BZiMakefile - ChIDE - Professional Edition
File Edit Seach ‘Wiew Tools Debug Options Language Buffers Help

g [B

IDSEG] S =8 X ~|qate

| ¥start $Cortinue @abort S=Step Ehlext 2=lUp S=Down UBreak UClear || $2Parse » Run @Stop

1 Makefi~ |
1 Close e Makefile for Windows -
2 Save and 'nmake' in a Ch shell to build command 'hello.exe’ —
3
p Save As
5
6 =
7 Print fextern/include —
8 CFLAG=
el LFLAG=
10
11 target: hello.exe
17

rnmake -f Makefile

Microsoft (R) Program Maintenance Utility Version 8.00.50727.762
Copyright {C) Microsoft Corporation. All rights reserved.

*Exit code: 0O

< |
354 chars in 19 lines. Sel: O chars.

A=

Figure 34. Using a makefile to compile a C/C++ program.

40

9 LOCAL LANGUAGES SUPPORTED IN CHIDE

8 Other Computer Languages Understood by ChIDE

ChIDE is a general-purpose text editor. It currently is dblsyntax highlighting the following languages.

C/Ch/C++*
CSs*

HTML*

Make

SQL and PLSQL
TeX and LaTeX
XML~

If the symbol' *’ is attached to a language, it denotes that the folding asideddn sectioii 314 is supported
for the language.

Language settings are determined from the file extensiothimitan be changed by selecting another
language from théanguage menu.

9 Local Languages Supported in ChIDE

When Ch is installed in a platform in a language differentrfrEnglish, the menus and dialogs of ChIDE
will be in its local language. By default, ChIDE supports mtian 30 local languages as follows:
Afrikaans, Aribic, Basque, Brazilian Portuguese, BulgariCatalan, Chinese Simplified, Chinese Tra-
ditional, Czech, Danish, Dutch, French, Galician, Gern@ameek, Hungarian, Indonesian, Italian, Japanese,
Korean, Malaysian, Norwegian, Polish, Romanian, PortaguRussian, Serbian, Slovenian, Spanish, Span-
ish (Mexican), Swedish, Thai, Turkish, Ukrainian, and Wels
A new local language can also be easily supported.

41

Index

.chrc[31
chrc[31
_fpath [36
_ipath [32
_path[31[3P

abbreviationd 13
buffers[18

cd,[29
ChIDE,d
chide[29
chmod[3B
chrc[31
command shel[-28
commandd,38
compile[38
Compile and Link Commands
Build,[33
Compile[38
Go,[38
Link,
copyright[j
cp,29
CssS[L

Debug Command
Watch [26

Debug Commands
Abort,[13
Continue[IB
Down,[20
Next,[13[20
Parse[B
Run[3
Start[I8
Step[IB[20
Stop[®
Up,[20

Debug Commands inside Debug Command Pane

abort[Z8
assign[2K1
call,22
clear[Z8
clearfunc[ZB
clearline[ZB
clearvar[ZB
cont[26
down [Z6
expr[23
help,[23

42

locals[Z6
next 2%
print,24
remove[Zb
remove expi 26
run,26
stack[Zb
start[Zh
step[2b
stopat[Zb
stopin[Z6
stopvarZb
up,26
variables[26
watch [26
Debug Pane
BreakpointdI9
Locals[2D
Stack[Z1L
Variables[2L

debuggind I8

edit,[12
Embedded CHt]1

find,[13
folding,[13
font size[[IB
function

function files[3b
function keys[CIB

homework[(Th
HTML, &1
html,[Z1

IDE, [0
Integrated Development Environmelit, 1

keyboard commands, 113

languages
CSS[41
HTML, BT
html,[Z1
LaTeX,[Z1
Make [Z1
PLSQLA1
sSQL@
Tex,[Z1
XML, &1

LaTeX,[Z1

INDEX

link,
Is,29

Make [Z1
Makefile [3B
makefile [3B
mkdir,[29

Output[®
Output Pand]6
output pand, 38

PLSQL[ZA1
prompt[28
pwd,[Z9

remvar[3¥

replace[IB
rm,[29

sessiond,18
SQL,[Z1
stradd()[31[-32

Tex,[Z1

Unix Commands
cd,[29
cp,[29
Is,[29
mkdir,[29
pwd,[29
rm,[29
rmdir,[29

XML, £

43

INDEX

	Introduction
	Executing C/Ch/C++ Programs in ChIDE
	Getting Started
	Editing and Executing C/Ch/C++ Programs
	Executing C/Ch/C++ Programs with the User Input
	Executing C/Ch/C++ Programs with Plotting
	Executing C/Ch/C++ Programs with Command Line Arguments
	Indenting C/Ch/C++ Programs

	Editing in ChIDE
	Edit
	Find and Replace
	Changing Font Size
	Folding
	Keyboard Commands
	Abbreviations
	Buffers
	Sessions

	Debugging C/Ch/C++ Programs in ChIDE
	Executing Programs in Debug Mode
	Using the Debug Console Window for Input and Output
	Setting and Clearing Breakpoints
	Monitoring Local Variables and Their Values in the Debug Pane
	Monitoring Variables in Different Stacks and Their Values in the Debug Pane
	Using Debug Commands in the Debug Command Pane

	Getting Started with Ch Command Shell
	Portable Commands for Handling Files
	Setup Search Paths for Commands, Header Files, and Function Files in Ch
	Interactive Execution of C/Ch/C++ Programs
	Interactive Execution of C/Ch/C++ Expressions and Statements
	Interactive Execution of C/Ch/C++ Functions
	Interactive Execution of C++ Features

	Interactive Execution of Commands in the Output Pane
	Compiling and Linking C/C++ Programs in ChIDE
	Other Computer Languages Understood by ChIDE
	Local Languages Supported in ChIDE
	Index

