
Getting Started
with ChIDE and Ch Command Shell

Ch Version 6.3

Copyright c©2010 by SoftIntegration, Inc., All rights reserved

How to Contact SoftIntegration

Mail SoftIntegration, Inc.
216 F Street, #68
Davis, CA 95616

Phone + 1 530 297 7398
Fax + 1 530 297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright c©2010 by SoftIntegration, Inc. All rights reserved.
Revision 6.3.0, November 2010

Permission is granted for registered users to make one copy for their own personal use. Further reproduction,
or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited.

SoftIntegration, Inc. is the holder of the copyright to the Ch language environment described in this docu-
ment, including without limitation such aspects of the system as its code, structure, sequence, organization,
programming language, header files, function and command files, object modules, static and dynamic loaded
libraries of object modules, compilation of command and library names, interface with other languages and
object modules of static and dynamic libraries. Use of the system unless pursuant to the terms of a license
granted by SoftIntegration or as otherwise authorized by law is an infringement of the copyright.

SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressly disclaimed. Users should be aware that
included in the terms and conditions under which SoftIntegration is willing to license the Ch lan-
guage environment as a provision that SoftIntegration, andtheir distribution licensees, distributors
and dealers shall in no event be liable for any indirect, incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that all complex software systems and their doc-
umentation contain errors and omissions. SoftIntegrationshall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if SoftIntegration has been advised of the errors
or omissions. The Ch language environment is not designed orlicensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communic ations; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, ChIDE, SoftIntegration, and One Language for All are either registered trademarks or trademarks of
SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows, Windows
2000, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation. Solaris and
Sun are trademarks of Sun Microsystems, Inc. Unix is a trademark of the Open Group. HP-UX is either a
registered trademark or a trademark of Hewlett-Packard Co.Linux is a trademark of Linus Torvalds. Mac
OS X and Darwin are trademarks of Apple Computers, Inc. QNX isa trademark of QNX Software Systems.
AIX is a trademark of IBM. All other trademarks belong to their respective holders.

i

Table of Contents

1 Introduction 1

2 Executing C/Ch/C++ Programs in ChIDE 1
2.1 Getting Started 1
2.2 Editing and Executing C/Ch/C++ Programs 2
2.3 Executing C/Ch/C++ Programs with the User Input 8
2.4 Executing C/Ch/C++ Programs with Plotting 8
2.5 Executing C/Ch/C++ Programs with Command Line Arguments 10
2.6 Indenting C/Ch/C++ Programs 12

3 Editing in ChIDE 12
3.1 Edit 12
3.2 Find and Replace 13
3.3 Changing Font Size 13
3.4 Folding 13
3.5 Keyboard Commands 13
3.6 Abbreviations 13
3.7 Buffers 18
3.8 Sessions 18

4 Debugging C/Ch/C++ Programs in ChIDE 18
4.1 Executing Programs in Debug Mode 18
4.2 Using the Debug Console Window for Input and Output 19
4.3 Setting and Clearing Breakpoints 19
4.4 Monitoring Local Variables and Their Values in the DebugPane 20
4.5 Monitoring Variables in Different Stacks and Their Values in the Debug Pane 20
4.6 Using Debug Commands in the Debug Command Pane 24

5 Getting Started with Ch Command Shell 28
5.1 Portable Commands for Handling Files 29
5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch 30
5.3 Interactive Execution of C/Ch/C++ Programs 33
5.4 Interactive Execution of C/Ch/C++ Expressions and Statements 33
5.5 Interactive Execution of C/Ch/C++ Functions 36
5.6 Interactive Execution of C++ Features 37

6 Interactive Execution of Commands in the Output Pane 38

7 Compiling and Linking C/C++ Programs in ChIDE 38

8 Other Computer Languages Understood by ChIDE 41

9 Local Languages Supported in ChIDE 41

Index 42

ii

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

1 Introduction

Ch is an embeddable cross-platform C/C++ interpreter. It isa superset of C with classes in C++. It supports
most new features in the latest C standard called C99 with other user friendly high-level extensions. Ch can
be used for cross-platform scripting, shell programming, 2D/3D plotting, numerical computing, embedded
scripting, and quick animation. With advanced numerical features, Ch can be conveniently used for vari-
ous applications in engineering and science. However, Ch isespecially suitable for interactive classroom
presentations in teaching and for students learning C/C++.

An Integrated Development Environment (IDE) can be used to develop C and C++ programs. It can
typically be used to edit programs with added features of automatic syntax highlighting and run the pro-
grams within the IDE. ChIDE is a cross-platform IDE to edit, debug, and run C/Ch/C++ programs in Ch
interpretively without compilation. The user can set breakpoints, run a program step by step, watch and
change values of variables during the program execution, etc. ChIDE is developed using Embedded Ch.
It is the most user-friendly IDE for beginners to learn computer programming in C and C++. ChIDE can
also be used to compile and link edited C/C++ programs using C/C++ compilers of your choice such as
Microsoft Visual Studio .NET in Windows, GNU gcc/g++ in Linux and Mac OS X.

Because Ch is interpretive, C/C++ expressions, statements, functions, and programs can be readily
executed in Ch without compilation. Therefore, Ch is an ideal solution for teaching and learning C/C++. An
instructor can use Ch interactively in classroom presentations with a laptop to quickly illustrate programming
features, especially when answering students’ questions.Learners can also quickly try out different features
of C/C++ without tedious compile/link/execute/debug cycles. To assist beginners in learning, Ch has been
especially developed with many helpful warning and error messages when an error occurs. instead of cryptic
and arcane messages likesegmentation faultandbus erroror crashing.

This brief document will get the user to quickly start using ChIDE and Ch command shell to learn
computer programming and develop programs in C/Ch/C++.

2 Executing C/Ch/C++ Programs in ChIDE

2.1 Getting Started

ChIDE can be launched by running the same programchideacross different platforms.
In Windows, ChIDE can also be conveniently launched by double clicking its icon shown in Figure 1 on

the desktop.
In Mac OS X x86, ChIDE can also be launched by clicking the iconshown in Figure 1 on the dashboard

or in the Applications folder.
In Linux, ChIDE can also be launched under the entry Programming Tools in the startup menu. The

command

ch -d

will create an icon for Ch on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be
created on the desktop.

Figure 1. The ChIDE icon in Windows, Mac OS X, and Linux.

1

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Figure 2. The program edited inside the editing pane in ChIDE.

2.2 Editing and Executing C/Ch/C++ Programs

Text editing in ChIDE works similarly to most Macintosh or Windows editors such as Notepad with the
additional feature of automatic syntax highlighting. ChIDE can hold multiple files in memory at one time
but only one file will be visible. By default, ChIDE allows up to 20 files in memory at once as described in
section 3.7.

As an example, open a new document, and type

/* File: hello.c
Print ’Hello, world’ on the screen */

#include <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

}

in the text as shown in Figure 2 in the editing pane. The program appears colored due to syntax highlighting.
The same programhello.c in CHHOME/demos/bin/hello.c, whereCHHOME is the home direc-

tory for Ch, such asC:/Ch in Windows forC:/Ch/demos/bin/hello.c and/usr/local/ch in
Mac for/usr/local/ch/demos/bin/bin/hello.c, can also be loaded using theFile | Open
command. By default, this program is loaded when the ChIDE isstarted. In Windows, a program listed un-
der the Windows explorer can also be dragged and dropped on tothe ChIDE, which will open the program
in the editing pane.

Save the document as a file namedhello.c by the commandFile | Save As, as shown in Fig-
ure 3. You can also right click the file on the file name on the Tabbar, located below the debug bar, and then
select the commandSave As to save the program as shown in Figure 4.

The line numbers, margin, and fold margin on the left side of the editing pane can be suppressed as
shown in Figure 5 by clicking the commandsView | Line Numbers, Margin, Fold Margin,
respectively. The fold point markers’-’ and’+’ on the fold margin can be clicked to expand and contract
a fold for a block of code, respectively.

There are four panes in ChIDE: the editing pane, debug pane, debug command pane, and output pane,
as shown in Figure 6. Figure 6. also shows various terms used to describe ChIDE in this documentation.
The debug pane is located either to the below of the editing pane or on the right. Initially it is of zero size,
but it can be made larger by dragging the divider between it and the editing pane. The debug command pane

2

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Figure 3. Saving the edited program using the commandFile | Save As in ChIDE.

Figure 4. Saving the edited program in ChIDE by right clicking the file name.

Figure 5. The program displayed without line numbers, margin, and fold margin in ChIDE.

3

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Figure 6. Terms related to the layout of ChIDE.

is located either to the below of the debug pane or on the right. Details about the debug pane and debug
command pane will be described in section 4. Similarly, the output pane is located either to the below of the
debug pane or on the right. The output pane is on the left of thedebug command pane. Initially the output
pane is of zero size, but it can also be made larger by draggingthe divider between it and the debug pane.
By default, the output from the program is directed into the output pane.

TheView | Vertical Split command can be used to change the layout of the ChIDE in vertical
mode, in which the editing pane is on the left, the debug pane is in the middle, and the output pane and
debug command pane are on the right. The location and size of the ChIDE, the sizes of editing pane, debug
pane, and output pane in the current session are saved when ChIDE is closed. When ChIDE is started
next time, these saved values in the previous session will beused for the new session. The command
View | Default Layoutwill use the values in ChIDE global and user options files to reset ChIDE to
use the default layout.

A C/Ch/C++ program with the file extension.c, .ch, .cpp, .cc, and.cxx, or without file extension
can readily be executed in ChIDE. Perform theRun on the debug bar orTools | Run command as shown
in Figure 7 to execute the programhello.c. Instead of performing theRun orTools | Run command,
pressing function keyF2 will also execute the program. Detailsfor keyboard commands are described in
section 3.5.

When the programhello.c is executed, the output pane will be made visible if it is not already visible
and will display

4

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Figure 7. Executing the program using the commandRun in ChIDE and its output.

>ch -u "hello.c"
Hello, world
>Exit code: 0

as shown in Figure 7. The first line in the blue color

>ch -u "hello.c"

from ChIDE shows that it uses the commandch to execute the programhello.c. The next line in the
black color is the output from running the programhello.c. The last line in the blue color is from ChIDE
showing that the program has finished. This line displays theexit code for the program. An exit code of 0
indicates that the program is terminated successfully by the statement

return 0;

or

exit (0);

in the program. If a failure had occurred during the execution of the program or the program is terminated
with a non-zero value for a return or exit statement such as

return -1;

or

exit(-1);

the exit code would be -1.
ChIDE understands the error messages produced by Ch. To see this, add a mistake to the program by

changing the line

printf("Hello, world\n");

to

5

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Figure 8. The error line in output from executing programhello.c.

printf("Hello, world\n";

Perform theRun or Tools | Run command for the modified program. The results should look similar
to those below

ERROR: missing ’)’ before ’;’
ERROR: syntax error before or at line 7 in file ’C:\ch\demos\bin\hello.c’
==>: printf("Hello, world\n";
BUG: printf("Hello, world\n"; <== ???

ERROR: cannot execute command ’C:\ch\demos\bin\hello.c’

as shown in Figure 8. Because the program fails to execute, the exit code -1 is displayed at the end of the
output pane as

>Exit code: -1

If you double click the red colored error message in the output pane shown in Figure 8 with the left button
of your mouse, the line with incorrect syntax and the error message in the output pane will be highlighted
with a yellow background as shown in Figure 9. The caret is moved to this line and the pane is automatically
scrolled if needed to show the line. ChIDE understands both the file name and line number parts of error
messages so it can open another file (such as a header file) if errors were caused by that file.

While it is easy to see where the problem is in this simple case, with a large file, the
Tools | Next Error Message command, or the function keyF4, can be used to view each of the
reported errors. Upon performingTools | Next Error Message, the first error message in the out-
put pane and the appropriate line in the editing pane are highlighted with a yellow background.

The commandTools | Previous Error Message, or the function keyShift+F4, can be
used to view the previous error message.

The output pane can be opened and closed by the commandView | Output Pane. The contents
of the output pane can be cleared by the commandView | Clear Output Pane or the function key
F9 as shown in Figure 10.

6

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

Figure 9. Finding the error line in output from executing program hello.c.

Figure 10. Clearing the contents in the output pane.

7

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.3 Executing C/Ch/C++ Programs with the User Input

Figure 11. Executing the program with input and output.

If the command execution has failed and is taking too long to complete, then the
Stop on the debug bar orTools | Stop Executing command can be used to stop the program.

You may use the commandParse on the debug bar orTools | Parse to just check the syntax error
of the program without executing it.

2.3 Executing C/Ch/C++ Programs with the User Input

ChIDE can also execute programs that require the user’s input through such C functions asscanf(). For ex-
ample, load the program C:/Ch/demos/bin/scanf.c in Windows or
/usr/local/ch/demos/bin/scanf.c in Linux or Mac OS X, as shown in Figure 11.

When the program is executed, the user will be prompted to input a number as shown in Figure 11. The
user then must type in a number in the same pane for both input and output. Both input number of 56 and
output are shown in Figure 11.

2.4 Executing C/Ch/C++ Programs with Plotting

Running a C/Ch/C++ program with graphical plotting is the same as running other programs. This can be
demonstrated by an example.

Type in the code as shown in Figure 12. The same program can also be loaded from
C:/Ch/demos/bin/fplotxy.cppWhen the program is executed, it creates a plot shown in Figure 13.
The plotting functionfplotxy () is available in Ch or SoftIntegration C++ Graphical Library (SIGL). The pro-
gram uses the plotting functionfplotxy () to plot function func() with 37 points and with the x value in the
range from 0 to 360.

To compile a program using plotting features with header filechplot.h, the program has to be treated as
a C++ program with file extension .cpp to link with a SIGL C++ plotting library. How to compile a C++
program using a C++ compiler will be described in section7.

8

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.4 Executing C/Ch/C++ Programs with Plotting

Figure 12. A program using the plotting functionfplotxy ().

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400

si
n(

x)

x (degree)

function sin(x)

Figure 13. The output of the plotting program in Figure 12.

Many sample programs are available in CHHOME/demos/bin andCHHOME/demos/lib/libch/plot di-
rectories to demonstrate capabilities and usages of the plotting features in Ch. For example, the program
C:/Ch/demos/bin/plotxy.cppuses the plotting functionplotxy() plot data stored in arrays. When it
is executed, it creates the same plot shown in Figure 13. The program
C:/Ch/demos/bin/fplotxyz.cpp uses the plotting function fplotxyz() to plot the function
cos(x) sin(y) with two independent variablesx andy for thex value in the range from -3 to 3 andy in the
range of -4 to 4. The plot uses 80 points for bothx and y coordinates. The program
C:/Ch/demos/bin/legend.cpp shows how to add legends for multiple curves to a plot.

9

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Arguments

Figure 14. A program for handling command line arguments.

Figure 15. Launching the modal Command Line Arguments dialog.

2.5 Executing C/Ch/C++ Programs with Command Line Arguments

ChIDE can run programs with changeable command line arguments. To set the command line arguments,
use theTools | Command Line Arguments command to view the modeless Command Line Argu-
ment dialog which shows the current command line arguments and allows setting new values. The acceler-
ator keys for the main window remain active while this dialogis displayed, so it can be used to rapidly run a
command several times with different arguments. Alternatively, a command executed in the Output Pane as
described in section 6 can be made to display the modal Command Line Arguments dialog when executed
by starting the command with a’*’ which is otherwise ignored as shown below.

* C:/Ch/demos/bin/commandarg.c
* "C:/Ch/demos/bin/commandarg.c"

If the modeless Command Line Arguments dialog is already visible, then the’*’ is ignored.
The program in Figure 14 will accept the command line arguments and print them out. The command

Tools | Command Line Arguments as shown in Figure 15 launches the modeless Command Line
Argument dialog. Figure 16 shows how command line argumentsare setup. The output from execution of
this program with command line arguments is displayed in Figure 17.

10

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Arguments

Figure 16. Setting command line arguments.

Figure 17. Executing the program with command line arguments.

11

3 EDITING IN CHIDE 2.6 Indenting C/Ch/C++ Programs

Figure 18. Using editing commands by right clicking on the editing pane.

2.6 Indenting C/Ch/C++ Programs

For readability and software maintenance, each line in a program should be properly indented. This is
especially important for readability for a program with many nested loops and selection statements. The
commandTools | Indent on the menu bar properly indents the program in the editing pane. You
can also right click the file on the file name on the Tab bar, located below the debug bar, and then select
the commandIndent to indent the program. Figure 4 shows the commandIndent when the file name
hello.c on the Tab bar is right clicked.

3 Editing in ChIDE

Most text editing features in a word processor such as Microsoft Word or Notepad are available in ChIDE.
Menus on the tool bar and menus under the commandEdit on the menu bar can be used to edit programs
in the editing pane. Some unique features for editing C/Ch/C++ programs in ChIDE are described in this
section.

3.1 Edit

In Windows, Right clicking on the editing pane will also bring up the commonly used editing commands as
shown in Figure 18.

As the user inputs the text into the editing pane, if the inputstring matches a word in the edited file, the
matched word will be displayed. The user can hit theEnter key to automatically complete the input for
the matched word. However, the user can typeCtrl+Enter to list all matched words, use the arrow key
to select a word, then typeEnter key to complete the word.

Rectangular regions of text can be selected in ChIDE by holding down the Alt key on Windows or the
Ctrl key on Linux and Mac OS X while dragging the mouse over thetext.

Key commands and abbreviations can be used to speed up editing. Table 2 in section 3.5 lists many key
commands for quick editing. Abbreviations are described insection 3.6

12

3 EDITING IN CHIDE 3.2 Find and Replace

3.2 Find and Replace

ChIDE has options to allow searching for words, regular expressions, matching case, in the reverse direction,
wrapping around the end of the document. C style backslash escapes may be used to search and replace
control characters. Replacements can be made individually, over the current selection or over the whole
file. When regular expressions are used, tagged subexpressions can be used in the replacement text. Regular
expressions will not match across a line end.

3.3 Changing Font Size

For the classroom presentation, the font size of the displayed program can be enlarged by clicking the
commandView | Change Font Size, and then make changes. In addition, the keyboard commands
Ctrl+Keypad+,Ctrl+Keypad-, andCtrl+Keypad/ can be conveniently used during a presentation
to magnify the font size, reduce the font size, and restore the font size to normal, respectively, as shown in
Table 2 in section 3.5. Note that for a laptop without a separate Keypad, to use the keyboard commands,
you need to turn on “Num Lock” by pressingShift+NumLk key first. Then, use the keys on the keypad.
For example, press the keyCtrl+Keypad+with the key for‘+’ next to theShift key.

3.4 Folding

ChIDE supports folding for C/Ch/C++ and several other languages as presented in section 8. Fold points
are based upon indentation for C/Ch/C++ and on counting braces for the other languages. The fold point
markers can be clicked to expand and contract folds as shown in Figures 2 and 5 in section 2.2. The keyboard
commandCtrl+Shift+Click in the fold margin will expand or contract all the top level folds. The
commandCtrl+Click on a fold point to toggle it and perform the same operation on all children. The
commandShift+Click on a fold point to show all children.

3.5 Keyboard Commands

Keyboard commands in ChIDE mostly follow common Windows andGTK+ conventions. All move keys
(arrows, page up/down, home and end) allow to extend or reduce the stream selection when holding the Shift
key, and the rectangular selection when holding the Shift and Alt keys. Some keys may not be available with
some national keyboards or because they are taken by the system such as by a window manager on GTK+.
Keyboard equivalents of menu commands are listed in the menus.

Table 1 lists the most commonly used commands and their corresponding keyboard commands.
Table 2 lists less commonly used commands with no menu equivalent.
By default, function keys F9, F10, F11, and F12 in Mac OS X are pre-binded to certain features. To use

these function keys for ChIDE as shown in Table 1, you can disable these pre-binding with the following
steps:

• Click the Apple symbol on the upper left corner.
• Click System Preferences.
• Click Keyboard & Mouse.
• Click Keyboard Shortcuts.
• Click to disable the pre-selected bindings for F9, F10, F11,and F12.

3.6 Abbreviations

Abbreviations in ChIDE can replace a short name with a predefined text for quick editing text or programs.
To use an abbreviation, type it and use theEdit | Expand Abbreviation command or theCtrl+B
key to insert the expansion. The abbreviation is replaced byan expansion defined in the abbreviation files,

13

3 EDITING IN CHIDE 3.6 Abbreviations

Table 1. Commonly used commands and their corresponding keyboard commands in ChIDE.

Command Keyboard Command
Help F1
Run C/Ch/C++ program in Ch F2
Find Next F3
Find Previous Shift+F3
Next Error Message F4
Previous Error Message Shift+F4
Start (Debug the program) F5
Step (Single step) F6
Next (Step over the next statement) F7
Close/Open Output Pane F8
Clear Output Pane F9
Clear Debug Command Pane F10
Close/Open Debug Console Window F11
Full screen F12

one is global and the other is the user specific. The global abbreviations for writing C/Ch/C++ can be opened
by the command

Options | Open ChIDE Global Abbreviation File

The global abbreviations can be overwritten by the user abbreviation. The user abbreviation file can be
opened by the command

Options | Open ChIDE User Abbreviation File

An abbreviation file contains a list of entries of the form

abbreviation=expansion

An abbreviation name can have any character (except controlcharacters such as CR and LF), including
accented characters and multibyte characters for Asian languages such as Chinese.

The abbreviation names have properties files limits: they cannot start with sharp (#) or space or tab (but
can have spaces inside); and they cannot have’=’ character inside. An abbreviation name is limited to 32
characters, which should be more than enough for anabbreviation.

An expansion may contain new line characters indicated by’\n’. The character’|’ in an expansion
marks the position where the caret will be after expansion. To include a literal’|’ in an expasion, use
’||’.

When expanding, the names don’t need to be separated from theprevious text, i.e. if you definëe as
’é’, you can expand it inside a word.

If a name is the ending of another one, only the shorter one will be expanded, i.e. if you define’ring’
and’gathering’, the later will see only the’ring’ part expanded.

The global programming abbreviations can be used to speed upthe typing and indenting programs.
Table 3 lists the global abbreviations predefined for writing C/Ch/C++ programs.

A sample abbreviationhw is included in the distributed default user abbreviation file. If you type the
abbreviationhw followed by theCtrl+B key, the contents for the header for a homework assignment, as
shown in Figure 19, will be added in the editing pane conveniently. You may edit the user abbreviation file
by the command

Options | Open ChIDE User Abbreviation File

to configure the abbreviationhw with your name and relevant information for a class or project.

14

3 EDITING IN CHIDE 3.6 Abbreviations

Table 2. Less common commands and their corresponding keyboard commands in ChIDE.

Description Keyboard Command
Magnify font size Ctrl+Keypad+
Reduce font size Ctrl+Keypad-
Restore font size to normal Ctrl+Keypad/
Cycle through the opened files in the buffers Ctrl+Tab
Indent block Tab
Dedent block Shift+Tab
Delete to start of word Ctrl+BackSpace
Delete to end of word Ctrl+Delete
Delete to start of line Ctrl+Shift+BackSpace
Delete to end of line Ctrl+Shift+Delete
Go to start of document Ctrl+Home
Extend selection to start of document Ctrl+Shift+Home
Go to start of display line Alt+Home
Extend selection to start of display line Alt+Shift+Home
Go to end of document Ctrl+End
Extend selection to end of document Ctrl+Shift+End
Go to end of display line Alt+End
Extend selection to end of display line Alt+Shift+End
Expand or contract a fold point Ctrl+Keypad*
Create or delete a bookmark Ctrl+F2
Select to next bookmark Alt+F2
Scroll up Ctrl+Up
Scroll down Ctrl+Down
Line cut Ctrl+L
Line copy Ctrl+Shift+T
Line delete Ctrl+Shift+L
Line transpose with previous Ctrl+T
Line duplicate Ctrl+D
Find matching preprocessor conditional, skipping nested ones Ctrl+K
Select to matching preprocessor conditional Ctrl+Shift+K
Find matching preprocessor conditional backwards, skipping nested ones Ctrl+J
Select to matching preprocessor conditional backwards Ctrl+Shift+J
Previous paragraph. Shift extends selection Ctrl+[
Next paragraph. Shift extends selection Ctrl+]
Previous word. Shift extends selection Ctrl+Left
Next word. Shift extends selection Ctrl+Right
Previous word part. Shift extends selection Ctrl+/
Next word part. Shift extends selection Ctrl+\

15

3 EDITING IN CHIDE 3.6 Abbreviations

Table 3. The default global abbreviations and their expansions. (Continued)

Abbreviation Expansion
com /* | */
inc #include<|>
myinc #include"|"
def #define|
main function main()
mainarg function main() with arguments
if if statement
elseif else if statement
else else statement
for for loop
while while loop
do do-while loop
switch switch statement
foreach foreach loop
a [|] for an array index
c ’|’ for a character
s ”|” for a string
p (|) for parentheses
pi M PI|
epsilon FLTEPSILON|
cond | ? : for conditional operator
sizeof sizeof(|)
struct struct structure
union union structure
enum enum structure
class class structure
stdlib.h include stdlib.h
time.h include time.h
assert.h include assert.h
complex.h include complex.h
ctype.h include ctype.h
errno.h include errno.h
fenv.h include fenv.h
float.h include float.h
inttypes.h include inttypes.h
iso646.h include iso646.h
limits.h include limits.h
locale.h include locale.h
math.h include math.h

16

3 EDITING IN CHIDE 3.6 Abbreviations

Table 3. (Continued)

Abbreviation Expansion
setjmp.h include setjmp.h
signal.h include stdarg.h
stdarg.h include stdarg.h
stdbool.h include stdbool.h
stddef.h include stddef.h
stdint.h include stdint.h
stdio.h include stdio.h
stdlib.h include stdlib.h
string.h include string.h
tgmath.h include tgmath.h
time.h include time.h
wchar.h include wchar.h
wctype.h include wctype.h
chdl.h include chdl.h
chplot.h include chplot.h
chshell.h include chshell.h
numeric.h include numeric.h
func a function definition
prot |(); for a function prototype
call |(); for calling a function
printf printf("|\n");
scanf scanf("|", &);
sin sin(|)
a standard C function namecall the standard C function

Figure 19. Using the abbreviationhw to create the header for a homework assignment.

17

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
3.7 Buffers

Figure 20. Debug menus.

3.7 Buffers

ChIDE has 20 buffers by default, each containing a file. The number of the default buffers can be changed
in the user option file for ChIDE. TheBuffers menu can be used to switch between buffers, either by se-
lecting the file name or using theBuffers | Previous File andBuffers | Next File com-
mands. The keyboard commandCtrl+Tab cycles through the opened files in the buffers as shown in
Table 1 in section 3.5.

When all the buffers contain files, then opening a new file causes a buffer to be reused which may require
a file to be saved. In this case an alert is displayed to ensure the user wants the file saved.

3.8 Sessions

A session is a list of file names and some options for ChIDE. Youcan save a complete set of your currently
opened buffers as a session for fast batch-loading in the future. Sessions are stored as plain text files with
the extension ”.session”.

Use the commandsFile | Load Session andFile | Save Session to load/save sessions.
When ChIDE is closed, the opened buffers are saved in a session. When ChIDE is started next time, the

previously saved session will be loaded automatically in the new session.

4 Debugging C/Ch/C++ Programs in ChIDE

The ChIDE has all capabilities available in a typical debugger for binary C programs. The debug interface
commands, such asStart andStep, are available under the commandDebug on the menu bar as shown
in Figure 20. They are also available directly on the debug bar. The applicable commands on the debug bar
at any point of debugging will be clickable. Non-clickable commands are dimmed.

4.1 Executing Programs in Debug Mode

The user can execute the program in the editing pane in the debug mode by theStart command or function
key F5. The program will stop when a breakpoint is hit. The user can execute the program line by line either
by commandStep or Next. The commandStep or function key F6 will step into a function whereas
the commandNext or function key F7 will step over the function to the next line. During debugging, the
commandContinue can be invoked to continue the execution of the program till the program ends or it
hits a breakpoint, which will be described in section 4.3.

18

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.2 Using the Debug Console Window for Input and Output

Figure 21. The Debug Console Window for input/output in debugging.

If a program execution has failed and is taking too long to complete, then the commandAbort can be
used to stop the program.

4.2 Using the Debug Console Window for Input and Output

When a program is executed in the debug mode, the standard input, output, and error streams are redi-
rected in a separate Debug Console Window shown in Figure 21.By default, the console window al-
ways stays on the top of other windows. This default behaviorcan be turned off or on by the com-
mandView | Debug Console Window Always on Top. The console window can be opened
and closed by the commandView | Debug Console Window. The contents of the debug console
window can be cleared by the commandDebug | Clear Debug Console Window as shown in
Figure 10. The colors for background and text as well as the windows size and font size of the debug con-
sole window can be changed by right clicking the ChIDE icon onthe upper left corner of the window and
selecting the menuProperties to make changes. Note that for Windows Vista, you need to run ChIDE
with the administrative privilege to make such a change.

4.3 Setting and Clearing Breakpoints

Before program execution or during the debugging of an executed program, new breakpoints can be added
to stop the program execution when they are hit. A breakpointfor a line can be added by clicking the left
margin of the line as shown in Figure 6. To clear the breakpoint, click the highlighted red mark on the left
margin of the line. Breakpoints in the debugger can be examined by clickingBreakpoints on the debug
pane selection bar above the debug pane as shown in Figure 6. The debug pane will display the breakpoint
number and its location for each breakpoint. A breakpoint for the current line can also be added by clicking
the commandBreak. on the debug bar It can also be deleted by clicking the commandClear on the debug
bar. If no breakpoint has been set, the commandClear is non-clickable. A breakpoint cannot be set in a
declaration statement; however, a breakpoint can be set fora declaration statement with initialization such
as

int i = 10;

The program shall not be edited when it is being executed and debugged. Otherwise, a warning message

Warning: Any changes made to the file during debugging will not
be reflected in the current debugging session

will be displayed. After a program is finished its execution,it can be edited. When a program is edited by
deleting or adding new code, the breakpoints set for the program will be updated automatically.

Using debug commands inside the debug command pane, which will be described in section 4.6, a
breakpoint can also be set for functions and controlling variables,

19

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.4 Monitoring Local Variables and Their Values in the DebugPane

Figure 22. Displaying names and values of local variables inthe currently called function.

4.4 Monitoring Local Variables and Their Values in the DebugPane

The commandStep on the debug bar or under the commandDebug on the menu bar can be used to step
into a function. If the function is not in one of files loaded inthe buffer already, the file containing the
function will be loaded. At the end of the execution of the program, the file loaded during the debugging
will be removed from the buffer. However, if a breakpoint hasbeen set in the loaded file, the file will be kept
in the buffer when the execution of the program is finished.

When a program is executed line by line by commandsStep or Next, names and their corresponding
values of variables in the current stack can be examined in the debug pane by clicking menuLocals on the
debug pane selection bar. When control of the program execution is inside a function, the commandLocals
displays the values of local variables and arguments of the function. When control of the program execution
is not in a function of a script, commandLocals displays the values of global variables of the program. As
shown in Figure 22, when programfunc.c, available in the directoryCHHOME/demos/bin, is executed
at line 9, highlighted by the color green, local integer variablesi andn are 1 and 10, whereas the arraya of
double type contains 1, 2, 3, 4, and 5, as shown in the debug pane.

4.5 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

The user can change the function stack during debugging. It can goUp to its calling function or move
Down to the called function so that the variables within its scopecan be displayed in the debug pane or
accessed in the debug command pane. Different colors are used to highlight the current line and executing
lines in the calling functions. For example, when clicking commandUp in Figure 22, the control flow of the

20

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

Figure 23. Displaying names and values of local variables inthe calling function.

program moves to its calling functionmain() at line 15 as highlighted with the blue color in Figure 23. The
menuDown as shown in Figure 22 is not clickable. But, the menuDown is clickable in Figure 23 when the
current stack is moved up. The debug pane at this point displays the name and value of the variablei, the
only regular variable, in the calling functionmain().

CommandStack displays function, member function, or program name and corresponding stack level
in each stack. The current running function has stack level 0, whereas level n+1 is the function that has
called a function with stack level n. For example, as shown inFigure 24, functionfunc() is called by
functionmain(), which in turn is invoked by the programfunc.c.

Names and their corresponding values of variables in all stacks can be displayed by the command
Variables on the debug pane selection bar as shown in Figure 25. Stack levels are highlighted with
the corresponding colors for the current line and executinglines in the calling functions in the editing pane
as shown in Figure 23. In Figure 25, the program is stopped at line 9. Names and values of local variables
inside functionsfunc() andmain() as well as global variables are displayed in the debug pane. As one
can see, before line 9 is executed, the value of the global variableg is 200.

When the command

Display special variables in debug pane for Locals and Variables

in the debug menu shown in Figure 20 is clicked, names and values of special variables such as__func__
will be displayed in the debug pane for commandsLocals andVariables.

21

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

Figure 24. Displaying different stacks at the executing point.

22

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

Figure 25. Displaying names and values of all variables in all stacks .

23

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

Figure 26. Debug commands in the debug command pane.

4.6 Using Debug Commands in the Debug Command Pane

Many debug commands inside the debug command pane are available during the debugging of a program.
A prompt

debug>

inside the debug command pane indicates that the debugger isready to accept debug commands. Type
the commandhelp, it will display all available commands as shown in Figure 26. The menu on the left
before a colon shows a command and the description on the right explains the action taken for the command.
All commands on the debug bar have corresponding commands inthis interactive debug command pane.
However, some features are available only through the debugcommand pane.

The variables, expressions, and functions can be manipulated by commandsassign, call, and
print. The commandassign assigns a value to a variable,call invokes a function, andprint prints
out the value of a variable or expression including functions. It is invalid to print an expression of void type
including a function with return type void. One can also justtype an expression, the value of the expression
will be displayed. If the expression is a function with the returning type of void, only the function is called.
For example, commands

24

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

Figure 27. Using debug commands in the debug command pane.

debug> assign i=2*10
debug> call func()
debug> print i
20
debug> 2*i
40
debug>

assign the variablei with the value of 10, call functionfunc(), and print out the value of the expression
2*i when the variablei is valid in its current scope. As another example, when program func.c is
executed and stopped at line 9 shown in Figure 27, the values of variablesa andi as well as the expression
2*g can be obtained by typing corresponding commands in the debug command pane.

The commandstart begins debugging a program. The optional command line arguments for the
commandstart andrun are processed and passed to the arguments for the functionmain(). For example,
to run programC:\Ch\demos\bin\commandarg.c shown in Figure 17, the debug command

debug> start -o option1 -v option2 "option3 with space"

will assign the strings"C:\Ch\demos\bin\commandarg.c", "-0", "option1", "-v",
"option2", and"option3 with space" to elementsargv[0],argv[1],argv[2],argv[3],

25

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

argv[4], andargv[5], the argumentargv of the main function

int main(int argc, char *argv[])

of the Ch scriptcommandarg.c, respectively. The output on the Debug Console Window is similar to that
displayed in the output pane in Figure 17. A command line argument with space should be enclosed within
two double quotation marks as shown above for the string"option3 with space".

The program will stop when a breakpoint is hit. The commandrun will execute the program without
debugging by ignoring breakpoints. Similar to commands on the debug bar, the user can execute the program
line by line either by commandstep or next. The commandstep will step into a function whereas
the commandnext will step over the function to the next line. During the debugging, the commandcont
can be invoked to continue the execution of the program till it hits a breakpoint or the program ends. The
user can change the function stack during debugging. It can go up to its calling function or move down to
the called function by the commandsup anddown, respectively, so that the variables within its scope can
be accessed in the debug command pane. The function or program names in all stacks are displayed by
the commandstack. Names and their corresponding values of variables in the current stack are displayed
by the commandlocals. Commandvariables displays names and values for all variables within its
scope in each stack.

The commandwatch adds an expression, including a single variable, into a listof watched expressions.
Watched expressions can be added before or during executionof a program. An expression can be removed
from the list of the watched expressions by theremove expr command. The commandremove removes
all expressions in the watched list. For example, commands in the debug command pane

debug> watch 2*g
debug> watch i

add expression2*g and variable i to a list of watched expressions as shown in Figure 28. When the
program is stopped at a breakpoint or stepped into next statement, the values of these watched expressions
can be viewed in the debug pane by clicking the commandWatch on the debug pane selection bar as shown
in Figure 28.

Before the program execution or during the debugging of an executed program, new breakpoints can be
added to stop the program execution. A breakpoint can be setup based on three specifications: file name and
line number, function, and controlling variable. When a breakpoint is setup in a function, the program will
stop at its first executable line of the function. When a breakpoint is setup for a variable, the program will
stop when the value of the variable changes. Each breakpointcan have an optional conditional expression.
When a breakpoint location is reached, the conditional expression is evaluated if it exists. The breakpoint
is hit only if the expression is either true or has changed which needs to be specified when the breakpoint
was added. By default, the breakpoint is hit only if the expression is true. Commandstopat sets a
new breakpoint specified by a file name and line number in the subsequent arguments. The program breaks
execution when it reaches this location. Commandstopin sets a new breakpoint for a function. The
program breaks execution when it reaches the first executable line of the function. Commandstopvar
sets a new breakpoint for a controlling variable. The variable is evaluated while the program is running. The
program breaks execution when the value of the variable changes. When each of these command is invoked,
a breakpoint is appended to the list of breakpoints. The optional conditional expression and triggering
method for each breakpoint are passed as the last two arguments of these commands. For example, the
syntaxes for setting a breakpoint in a file with a complete path and line number are as follows.

debug> stopat filename #
debug> stopat filename # condexpr
debug> stopat filename # condexpr condtrue

26

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using Debug Commands in the Debug Command Pane

Figure 28. Setting watch expressions and variables inside the debug command pane to display their values
in the debug pane.

The symbol# should be substituted by a line number. When a breakpoint location is reached, the optional
expressioncondexpr is evaluated. If the argumentcondtrue is true or missing, the breakpoint will be
hit if the value for the expression is true; otherwise, the breakpoint will be hit if the value for the expression
has changed. For example, the command

debug> stopat C:/Ch/demos/bin/func.c 6

sets a breakpoint in filefunc.c located at the directory C:/Ch/demos/bin at line 6. The command

debug> stopat C:/Ch/demos/bin/func.c 6 i+j 1

sets a breakpoint in filefunc.c at line 6. When the breakpoint location in file func.c at line 6is reached,
the expressioni+j is evaluated and the breakpoint will be hit if the value for the expressioni+j is true.
The above command is the same as

debug> stopat C:/Ch/demos/bin/func.c 6 i+j

The command

debug> stopat C:/Ch/demos/bin/func.c 6 i+j 0

27

5 GETTING STARTED WITH CH COMMAND SHELL

Figure 29. A Ch icon on a desktop in Windows, Linux, and Mac OS X.

Figure 30. A Ch command shell.

sets a breakpoint in filefunc.c at line 6. When the breakpoint location in filefunc.c at line 6 is
reached, the expressioni+j is evaluated and the breakpoint will be hit if the value for the expressioni+j
has changed. On the other hand, commandsclearline, clearfunc, andclearvar with proper
arguments remove a breakpoint of line, function, and variable type in the list, respectively. Command
clear removes all breakpoints in the debugger.

If a program execution has failed and is taking too long to complete, then the commandabort can be
used to stop the program.

The debug command pane can be cleared by clicking the command
View | Clear Debug Command Pane as shown in Figure 10.

5 Getting Started with Ch Command Shell

Ch can be used as a command shell in which commands are processed. Like other commonly used shells
such as the MS-DOS shell, Bash-shell, or C-shell, commands can be executed in a Ch shell. Unlike these
conventional shells, expressions, statements, functionsand programs in C and C++ can be readily executed
in a Ch shell.

A Ch shell can be launched by running the commandch. In Windows, Linux, and Mac OS X, a Ch
command shell can also be conveniently launched by clickingthe red-coloredCh icon, shown in Figure 29,
on the desktop or on the tool bar of the ChIDE.

Assume the user account is the administrator, after a Ch shell is launched in Windows, by default, the
screen prompt of the shell window becomes

C:/Documents and Settings/Administrator>

whereC:/Documents and Settings/Administrator is the user’shome directoryon the desk-
top as shown in Figure 30. The colors of the text and background as well as the window size and font size
of the shell window can be changed by right clicking the Ch icon at the upper left corner of the window, and
selecting the menuProperties to make changes. Note that for Windows Vista, you need to run ChIDE
with the administrative privilege to make such a change. Thedisplayed directoryC:/Documents and
Settings/Administrator is also called thecurrent working directory. If the user account is not the
administrator, the account nameAdministratorshall be changed to the appropriate user account name. The
prompt indicates that the system is in a Ch shell and is ready to accept the user’s terminal keyboard input.
The default prompt in a Ch shell can be reconfigured. If the input typed in is syntactically correct, it will

28

5 GETTING STARTED WITH CH COMMAND SHELL
5.1 Portable Commands for Handling Files

Table 4. Portable commands for handling files.

Command Usage Description
cd cd change to the home directory

cd dir change to the directorydir
cp cp file1 file2 copyfile1 to file2
ls ls list contents in the working directory
mkdir mkdir dir create a new directorydir
pwd pwd print (display) the name of the working directory
rm rm file removefile
chmod chmod +xfile change the mode offile to make it executable
chide chidefile.c launch ChIDE for editing and executingfile.c

be executed successfully. Upon completion of the execution, the system prompt> will appear again. If an
error occurs during the execution of the program or expression, the Ch shell prints out the corresponding
error messages to assist the user in debugging the program.

All statements and expressions of C can be executed interactively in a Ch command shell. For example,
the outputHello, world can be obtained by calling the functionprintf () interactively as shown below
and as seen in Figure 30.

C:/Documents and Settings/Administrator> printf("Hello, world")
Hello, world

In comparison with Figure 30, the last promptC:/Documents and Settings/Administrator>
is omitted to save the space in the presentation of this book.Note that the semicolon at the end of a statement
in a C program is optional when the corresponding statement is executed in command mode. There is no
semicolon in calling the functionprintf () in the above execution.

5.1 Portable Commands for Handling Files

At the system prompt>, not only C programs and statements, but also any other commands (such aspwd
for printing the current working directory) can be executed. In this scenario, Ch is used as a command shell
in the same manner as MS-DOS shell in Windows.

Commands can be executed in a Ch command shell or in a Ch program. There are hundreds of com-
mands along with their respective online documentation in the system. No one knows all of them. Every
computer wizard has a small set of working tools that are usedall the time, plus a vague idea of what else is
out there. In this section, we will describe how to use the most commonly used commands, listed in Table 4,
for handling files through examples. It should be emphasizedagain that these commands running in the Ch
shell are portable across different platforms such as Windows, Linux, or Mac OS X. Using these commands,
a user can effectively manipulate files on the system to run C programs.

Assume that Ch is installed inC:/Ch in Windows, the default installation directory. The current work-
ing directory isC:/Documents and Settings/Administrator, which is also the user’s home
directory. The application of portable commands for file handling can be illustrated by interactive execution
of commands in a Ch shell as shown below.

C:/Documents and Settings/Administrator> mkdir c99
C:/Documents and Settings/Administrator> cd c99
C:/Documents and Settings/Administrator/c99> pwd
C:/Documents and Settings/Administrator/c99
C:/Documents and Settings/Administrator/c99> cp C:/Ch/demos/bin/hello.c hello.c
C:/Documents and Settings/Administrator/c99> ls

29

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch

hello.c
C:/Documents and Settings/Administrator/c99> chide hello.c

As shown inUsagein Table 4, the commandmkdir takes one argument as a directory to be created. We
first create a directory calledc99 using the command

mkdir c99

Then, we change to this new directoryC:/Documents and Settings/Administrator/c99 us-
ing command

cd c99

Next, we display the current working directory with the command

pwd

A C programhello.c shown in Figure 2 in the directoryC:/Ch/demos/bin is copied to the working
directory with the same file name using the command

cp C:/Ch/demos/bin/hello.c hello.c

Files in the current directory are listed using the command

ls

At this point, there is only one file hello.c in the directory
C:/Documents and Settings/Administrator/c99. It is recommended that you save all your
developed C programs in this directory so that you may easilyfind all programs later on. Finally, program
hello.c is launched by the command

chide hello.c

to be edited and executed in ChIDE as shown in Figure 2. For a classroom presentation, sometimes, it is
more convenient to open multiple source files by a single command as shown below:

> chide file1.c file2.c header.h

To use a command dealing with a path with white space, the pathneeds to be placed inside a pair of
double quotation marks, as shown below, to remove filehello.c.

> rm "C:/Documents and Settings/Administrator/c99/hello.c"

5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch

When a command is typed into a prompt of a command shell for execution, the command shell will search
for the command in prespecified directories. In a Ch shell, the system variablepath of string type contains
the directories to be searched for the command. Each directory is separated by a semicolon inside the string
path. When a Ch command shell is launched, the system variablepath contains some default search paths.

For example, in Windows, the default search paths are

C:/Ch/bin;C:/Ch/sbin;C:/Ch/toolkit/bin;C:/Ch/toolkit/sbin;C:/WINDOWS;C:/WINDOWS/SYSTEM32;

30

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch

The user can add new directories to the search paths for the command shell by using the string func-
tion stradd() in the startup file, which will be discussed in detail a littlelater. This function adds argu-
ments of string type and returns it as a new string. For example, the directoryC:/Documents and
Settings/Administrator/c99 is not in the search paths for a command. If you try to run program
hello.c in this directory when the current working directory is
C:/Documents and Settings/Administrator, the Ch shell will not be able to find this pro-
gram, as shown below, and give two error messages.

C:/Documents and Settings/Administrator> hello.c
ERROR: variable ’hello.c’ not defined
ERROR: command ’hello.c’ not found

When Ch is launched or a Ch program is executed, by default, itwill execute the startup file.chrc in
Unix such as Linux and Mac OS X orchrc in Windows in the user’s home directory if the startup file
exists. In the remaining presentation, it is assumed that Chis used in Windows with a startup filechrc in
the user’s home directory. This startup file typically sets up the search paths for commands, header files,
function files, etc. In Windows, a startup filechrc with default setup is created in the user’s home directory
during installation of Ch. However, there is no startup file in a user’s home directory in Unix by default. The
system administrator may add such a startup file in a user’s home directory. However, the user can execute
Ch with the option-d as follows

ch -d

to copy a sample startup file from the directoryCHHOME/config/ to the user’s home directory if there is
no startup file in the home directory yet. Note thatCHHOME is not the string"CHHOME", instead it uses the
file system path under which Ch is installed. For example, by default, Ch is installed inC:/Ch in Windows
and/usr/local/ch in Unix. In Windows, the command in a Ch shell below

C:/Documents and Settings/Administrator> ch -d

will create a startup file chrc in the user’s home directory
C:/Documents and Settings/Administrator. This local Ch initialization startup filechrc
can be opened by the following command on the menu bar

Options | Open Ch Local Startup File

to edit the search paths in ChIDE, as shown in Figure 31. In Linux, the above commandch -d will also
create an icon for Ch on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be created
on the desktop.

To include the directoryC:/Documents and Settings/Administrator/c99 in the search
paths for a command, the following statement

_path = stradd(_path, "C:/Documents and Settings/Administrator/c99;");

needs to be added to the startup filechrc in the user’s home directory so that the commandhello.c
in this directory can be invoked regardless of what the current working directory is. After the directory
C:/Documents and Settings/Administrator/c99 has been added to the search path,path,
you need to restart a Ch command shell. Then, you will be able to execute the programhello.c in this
directory as shown below.

C:/Documents and Settings/Administrator> hello.c
Hello, world

31

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch

Figure 31. Open the local Ch initialization startup file for editing.

In Unix such as Linux and Mac OS X, the search paths for commands by default do not contain the
current working directory. To include the current working directory in the search paths for a command, the
following statement

_path = stradd(_path, ".;");

needs to be added in startup file.chrc in the user’s home directory. Function call
stradd(_path, ".;") adds the current directory represented by ’.’ to the system search pathspath.

Similar to path for commands, the header files in Ch are searched in directories specified in the system
variable ipath. Each path is also delimited by a semicolon. For example, thestatement below

_ipath = stradd(_ipath, "C:/Documents and Setting/Administrator/c99;");

adds the directoryC:/Documents and Setting/Administrator/c99 to the search paths for
header files included by the preprocessing directive#includesuch as

#include <headerfile.h>

One can also add this directory to the search pathsfpath for function files by the statement

_fpath = stradd(_fpath, "C:/Documents and Setting/Administrator/c99;");

A function file contains the function definition, which will be described in section 5.5.

32

5 GETTING STARTED WITH CH COMMAND SHELL
5.3 Interactive Execution of C/Ch/C++ Programs

5.3 Interactive Execution of C/Ch/C++ Programs

It is very simple and easy to run C programs interactively without compilation in a Ch shell. For example,
assume thatC:/Documents and Settings/Administrator/c99 is the current working direc-
tory as presented in section 5.1. The programhello.c in this directory can be executed in Ch to get the
output ofHello, world as shown below.

C:/Documents and Settings/Administrator/c99> hello.c
Hello, world
C:/Documents and Settings/Administrator/c99> _status
0

The exit code from executing a program in a Ch command shell iskept in the system variablestatus.
Because the programhello.c has been executed successfully, the exit code is 0 as shown inthe above
output when status is typed in the command line.

In Unix such as Linux and Mac OS X, in order to readily use the C programhello.c as a command,
the file has to be executable. The commandchmod can change the mode of a file. The following command

chmod +x hello.c

will make the programhello.c executable so that it can run in a Ch command shell.

5.4 Interactive Execution of C/Ch/C++ Expressions and Statements

For simplicity, only the prompt> in a Ch command shell will be displayed in the remaining presentation. If
a C expression is typed in the command shell, it will be evaluated by Ch and the result then will be displayed
on the screen. For example, if the expression1+3*2 is typed in, the output will be 7 as shown below.

> 1+3*2
7

Any valid C expression can be evaluated in a Ch shell. Therefore, Ch can be conveniently used as a calcu-
lator.

As another example, one can declare a variable at the prompt and then use the variable in the subsequent
calculations as shown below.

> int i
> sizeof(int)
4
> i = 30
30
> printf("%x", i)
1e
> printf("%b", i)
11110
> i = 0b11110
30
> i = 0x1E
30

33

5 GETTING STARTED WITH CH COMMAND SHELL
5.4 Interactive Execution of C/Ch/C++ Expressions and Statements

> i = -2
-2
> printf("%b", i)
11111111111111111111111111111110
> printf("%32b", 2)
00000000000000000000000000000010

In the above C statements, variablei is declared as int type with 4 bytes. Then, the integer value 30 for
i is displayed in decimal, hexadecimal, and binary numbers. The integral constants in different number
systems can also be assigned to variablei as seen above. Finally, the two’s complement representation of
the negative number−2 is also displayed. Characteristics for all other data typesin C can also be presented
interactively.

By default, a value of float or double type is displayed with two or four digits after the decimal point,
respectively. For example,

> float f = 10
> 2*f
20.00
> double d = 10
> d
10.0000

All C operators can be used interactively as shown below.

> int i=0b100, j = 0b1001
> i << 1
8
> printf("%b", i|j)
1101

The concept of pointers and addresses of variables can be illustrated as shown below.

> int i=10, *p
> &i
1eddf0
> p = &i
1eddf0
> *p
10
> *p = 20
20
> i
20

In this example, the variablep of pointer to int points to the variablei. The working principle for pointer to
pointer can also be interactively illustrated in the same manner. In the next example, the relation of arrays
and pointers is illustrated as follows:

34

5 GETTING STARTED WITH CH COMMAND SHELL
5.4 Interactive Execution of C/Ch/C++ Expressions and Statements

> int a[5] = {10,20,30,40,50}, *p;
> a
1eb438
> &a[0]
1eb438
> a[1]
20
> *(a+1)
20
> p = a+1
1eb43c
> *p
20
> p[0]
20

Expressionsa[1], *(a+1), *p, andp[0] all refer to the same element. Multi-dimensional arrays
can also be handled interactively. The boundary of an array is checked in Ch to detect potential bugs. For
example,

> int a[5] = {10,20,30,40,50}
> a[-1]
WARNING: subscript value -1 less than lower limit 0
10
> a[5]
WARNING: subscript value 5 greater than upper limit 4
50
> char s[5]
> strcpy(s, "abc")
abc
> s
abc
> strcpy(s, "ABCDE")
ERROR: string length s1 is less than s2 in strcpy(s1,s2)
ABCD
> s
ABCD

The allowed indices for arraya of 5 elements are from 0 to 4. Arrays can only hold 5 characters including
a null character. Ch can catch bugs in existing C code relatedto the array boundary overrun such as these.

The alignment of a C structure or C++ class can also be examined as shown below.

> struct tag {int i; double d;} s
> s.i =20
20
> s
.i = 20
.d = 0.0000

35

5 GETTING STARTED WITH CH COMMAND SHELL
5.5 Interactive Execution of C/Ch/C++ Functions

> sizeof(s)
16

In this example, although the sizes of int and double are 4 and8, respectively, the size of structures with
two fields of int and double types is 16, instead of 12, for the proper alignment.

5.5 Interactive Execution of C/Ch/C++ Functions

A program can be divided into many separate files. Each file consists of many related functions, which can
be accessible to any part of a program. All functions in the C standard libraries can be executed interactively
and can be used inside user defined functions. For example, inthe interactive execution:

> srand(time(NULL))
> rand()
4497
> rand()
11439
> double add(double a, double b) {double c; c=a+b+sin(1.5); return c;}
> double c
> c = add(10.0, 20)
30.9975

The random number generator functionrand() is seeded with a time value insrand(time(NULL) . Function
add() which calls type-generic mathematical functionsin() is defined at the prompt and then used.

A file that contains more than one function definition is usually suffixed with.ch to identify itself as
part of a Ch program. One can create a function file in a Ch programming environment. Afunction file in
Ch is a file that contains only one function definition. The name of a function file ends in.chf, such as
addition.chf. The names of the function file and function definition insidethe function file must be the
same. The functions defined using function files are treated as if they were system built-in functions in Ch.

Similar to path for commands, a function is searched based on the search paths in the system variable
fpath for function files. Each path is delimited by a semicolon. By default, the variablefpath contains the

pathslib/libc, lib/libch, lib/libopt, andlibch/numeric in the home directory of Ch.
If the system variablefpath is modified interactively in a Ch shell, it will be effective only for functions
invoked in the current shell interactively. For running scripts, the setup of function search paths in the current
shell will not be used and inherited in subshells. In this case, the system variablefpath can be modified in
startup file chrc in Windows or.chrc in Unix in the user’s home directory.

For example, if a file namedaddition.chf contains the program shown in Program 1, the function
addition() will be treated as a system built-in function, which can be called to compute the sum
a + b of two input argumentsa and b. Assume that the function fileaddition.chf is located at
C:/Documents and Settings/Administrator/c99/addition.chf, the directory
C:/Documents and Settings/Administrator/c99should be added to the function search path
in the startup file.chrc in Unix or fpath in Windows in the user’s home directory with the following state-
ment.

_fpath=stradd(_fpath, "C:/Documents and Settings/Administrator/c99;");

Functionaddition() then can be used either interactively in command mode as shown below,

> int i = 9
> i = addition(3, i)
12

36

5 GETTING STARTED WITH CH COMMAND SHELL
5.6 Interactive Execution of C++ Features

/* File: addition.chf
A function file with file extension .chf */

int addition(int a, int b) {
int c;
c = a + b;
return c;

}

Program 1. Function fileaddition.chf.
/* File: program.c

Program uses function addition() in function file addition.chf */
#include <stdio.h>

/* This function prototype is optional when function addition() in
file addition.chf is used in Ch */

int addition(int a, int b);

int main() {
int a = 3, b = 4, sum;

sum = addition(a, b);
printf("sum = %d\n ", sum);
return 0;

}

Program 2. A program using function fileaddition.chf.

or inside programs. In Program 2, the functionaddition() is called without a function prototype in
themain() function so that the function prototype defined inside the function fileaddition.chfwill be
invoked. If the search paths for function files have not been properly setup, a warning message such as

WARNING: function ’addition()’ not defined

will be displayed, when the functionaddition() is called.
When a function is called interactively in a Ch shell, the function file will be loaded. If you modify

a function file after the function has been called, the subsequent calls in the command mode will still use
the old version of the function definition that had been loaded. To invoke the modified version of the
new function file, you can either remove the function definition in the system using the commandremvar
followed by a function name. or start a new Ch shell by typingch at the prompt. For example, the command

> remvar addition

removes the definition for functionaddition(). The commandremvar can also be used to remove a
declared variable.

5.6 Interactive Execution of C++ Features

Not only C programs can be executed in Ch, but also classes andsome C++ features are supported in Ch as
shown below for interactive execution of C++ code.

> int i
> cin >> i
10
> cout << i

37

7 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

10
> class tagc {private: int m_i; public: void set(int); int get(int &);}
> void tagc::set(int i) {m_i = 2*i;}
> int tagc::get(int &i) {i++; return m_i;}
> tagc c
> c.set(20)
> c.get(i)
40
> i
11
> sizeof(tagc)
4

The input and output can be handled usingcin andcout in C++. The public methodtagc::set() sets the
private memberm i, whereas the public methodtagc::get() gets its value. The argument of method
tagc::get() is passed by reference. The size of the classtagc is 4 bytes which does not include the
memory for member functions.

6 Interactive Execution of Commands in the Output Pane

Binary commands or C/C++ programs can also be executed interactively inside the output pane as shown
in Figure 32. In Figure 32, the programhello.c is executed first in the output pane. Then, the command
pwd prints the current working directory. The commandls lists files and directories in the current working
directory. Options of a command can also be provided. For example, the commandls can invoked in the
form of

ls -F

to list directories with a forward slash at the end.
To use a command with a complete path which containing a whitespace, the path needs to be placed

inside a pair of double quotation marks, as shown below.

> "C:/Documents and Settings/Administrator/c99/hello.c"

How to execute /C/Ch/C++ programs with command line arguments is described in section 2.5.

7 Compiling and Linking C/C++ Programs in ChIDE

ChIDE can also compile and link an edited C/C++ program in theediting pane using C and C++ compil-
ers, then execute the created binary executable program. Bydefault, the ChIDE is configured during the
installation to use the latest Microsoft Visual Studio .NETinstalled in your Windows to compile C and C++
programs. The environment variables and commands for the Visual Studio compiler can be modified in the
individual startup configuration filechrc in the user’s home directory, which can be opened for editingas
shown in Figure 31. In Linux and Mac OS X x86, ChIDE uses compilers GNU gcc and g++ to compile C
and C++ programs, respectively. The default compiler can bechanged by modifying the C/Ch/C++ property
file cpp.propertieswhich can be opened by the commandOptions | cpp.properties.

The commandTools | Compile as shown in Figure 33 can be used to compile a program. The
output and error messages for compiling a C or C++ program aredisplayed in the output pane of the ChIDE.

38

7 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Figure 32. Executing commands inside the output pane.

In Windows, compiling a program will create an object file with file extension .obj. The object file can be
linked using the commandTools | Link to create an executable program. The executable in Windows
has file extension .exe.

If a make file makefile or Makefile is available in the current directory, the commandTools | Build
will invoke the make file to build an application. A make file can also be invoked by right clicking the file
name on the file tab, then clicking the commandmake in Linux or Mac and the commandmake or nmake
in Windows as shown in Figure 34.

When ChIDE is used to edit a make file, the syntax will be highlighted. Because the tab character is
reserved as a special character to begin a command for some make command, it will be preserved and not
replaced with white spaces. A file with the file extension.mak or with the following file name is recognized
as a make file in ChIDE:

makefile
makefile.win
makefile_win
makefile.Win
makefile_Win
Makefile
Makefile.win
Makefile_win
Makefile.Win
Makefile_Win

The commandTools | Go will execute the developed executable program.

39

7 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Figure 33. Compiling a C/C++ program.

Figure 34. Using a makefile to compile a C/C++ program.

40

9 LOCAL LANGUAGES SUPPORTED IN CHIDE

8 Other Computer Languages Understood by ChIDE

ChIDE is a general-purpose text editor. It currently is ableto syntax highlighting the following languages.

• C/Ch/C++*
• CSS*
• HTML*
• Make
• SQL and PLSQL
• TeX and LaTeX
• XML*

If the symbol’*’ is attached to a language, it denotes that the folding as described in section 3.4 is supported
for the language.

Language settings are determined from the file extension butthis can be changed by selecting another
language from theLanguage menu.

9 Local Languages Supported in ChIDE

When Ch is installed in a platform in a language different from English, the menus and dialogs of ChIDE
will be in its local language. By default, ChIDE supports more than 30 local languages as follows:

Afrikaans, Aribic, Basque, Brazilian Portuguese, Bulgarian, Catalan, Chinese Simplified, Chinese Tra-
ditional, Czech, Danish, Dutch, French, Galician, German,Greek, Hungarian, Indonesian, Italian, Japanese,
Korean, Malaysian, Norwegian, Polish, Romanian, Portuguese, Russian, Serbian, Slovenian, Spanish, Span-
ish (Mexican), Swedish, Thai, Turkish, Ukrainian, and Welsh.

A new local language can also be easily supported.

41

Index

.chrc, 31
chrc, 31
fpath, 36
ipath, 32
path, 31, 32

abbreviations, 13

buffers, 18

cd, 29
ChIDE, 1
chide, 29
chmod, 33
chrc, 31
command shell, 28
commands, 38
compile, 38
Compile and Link Commands

Build, 38
Compile, 38
Go, 38
Link, 38

copyright, i
cp, 29
CSS, 41

Debug Command
Watch, 26

Debug Commands
Abort, 18
Continue, 18
Down, 20
Next, 18, 20
Parse, 8
Run, 4
Start, 18
Step, 18, 20
Stop, 6
Up, 20

Debug Commands inside Debug Command Pane
abort, 28
assign, 24
call, 24
clear, 28
clearfunc, 28
clearline, 28
clearvar, 28
cont, 26
down, 26
expr, 24
help, 24

locals, 26
next, 26
print, 24
remove, 26
remove expr, 26
run, 26
stack, 26
start, 25
step, 26
stopat, 26
stopin, 26
stopvar, 26
up, 26
variables, 26
watch, 26

Debug Pane
Breakpoints, 19
Locals, 20
Stack, 21
Variables, 21

debugging, 18

edit, 12
Embedded Ch, 1

find, 13
folding, 13
font size, 13
function

function files, 36
function keys, 13

homework, 14
HTML, 41
html, 41

IDE, 1
Integrated Development Environment, 1

keyboard commands, 13

languages
CSS, 41
HTML, 41
html, 41
LaTeX, 41
Make, 41
PLSQL, 41
SQL, 41
Tex, 41
XML, 41

LaTeX, 41

42

INDEX INDEX

link, 38
ls, 29

Make, 41
Makefile, 38
makefile, 38
mkdir, 29

Output, 6
Output Pane, 6
output pane, 38

PLSQL, 41
prompt, 28
pwd, 29

remvar, 37
replace, 13
rm, 29

sessions, 18
SQL, 41
stradd(), 31, 32

Tex, 41

Unix Commands
cd, 29
cp, 29
ls, 29
mkdir, 29
pwd, 29
rm, 29
rmdir, 29

XML, 41

43

	Introduction
	Executing C/Ch/C++ Programs in ChIDE
	Getting Started
	Editing and Executing C/Ch/C++ Programs
	Executing C/Ch/C++ Programs with the User Input
	Executing C/Ch/C++ Programs with Plotting
	Executing C/Ch/C++ Programs with Command Line Arguments
	Indenting C/Ch/C++ Programs

	Editing in ChIDE
	Edit
	Find and Replace
	Changing Font Size
	Folding
	Keyboard Commands
	Abbreviations
	Buffers
	Sessions

	Debugging C/Ch/C++ Programs in ChIDE
	Executing Programs in Debug Mode
	Using the Debug Console Window for Input and Output
	Setting and Clearing Breakpoints
	Monitoring Local Variables and Their Values in the Debug Pane
	Monitoring Variables in Different Stacks and Their Values in the Debug Pane
	Using Debug Commands in the Debug Command Pane

	Getting Started with Ch Command Shell
	Portable Commands for Handling Files
	Setup Search Paths for Commands, Header Files, and Function Files in Ch
	Interactive Execution of C/Ch/C++ Programs
	Interactive Execution of C/Ch/C++ Expressions and Statements
	Interactive Execution of C/Ch/C++ Functions
	Interactive Execution of C++ Features

	Interactive Execution of Commands in the Output Pane
	Compiling and Linking C/C++ Programs in ChIDE
	Other Computer Languages Understood by ChIDE
	Local Languages Supported in ChIDE
	Index

