
g03 – Multivariate Methods g03acc

nag mv canon var (g03acc)

1. Purpose

nag mv canon var (g03acc) performs a canonical variate (canonical descrimination) analysis.

2. Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_canon_var(Nag_Weightstype weight, Integer n, Integer m, double x[],
Integer tdx, Integer isx[], Integer nx, Integer ing[], Integer ng,
double wt[], Integer nig[], double cvm[], Integer tdcvm,
double e[], Integer tde, Integer *ncv, double cvx[],
Integer tdcvx, double tol, Integer *irankx, NagError *fail)

3. Description

Let a sample of n observations on nx variables in a data matrix come from ng groups with
n1, n2, . . . , nng

observations in each group,
∑

ni = n. Canonical variate analysis finds the
linear combination of the nx variables that maximizes the ratio of between-group to within-group
variation. The variables formed, the canonical variates can then be used to discriminate between
groups.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares
and cross-products matrix. However, nag mv canon var calculates the canonical variates by means
of a singular value decomposition (SVD) of a matrix V . Let the data matrix with variable (column)
means subtracted be X, and let its rank be k; then the k by (ng − 1) matrix V is given by:

V = QT
XQg, where Qg is an n by (ng − 1) orthogonal matrix that defines the groups and QX is the

first k rows of the orthogonal matrix Q either from the QR decomposition of X:

X = QR

if X is of full column rank, i.e., k = nx, else from the SVD of X:

X = QDPT .

Let the SVD of V be:

V = Ux∆UT
g

then the non-zero elements of the diagonal matrix ∆, δi, for i = 1, 2, . . . , l, are the l canonical
correlations associated with the l canonical variates, where l = min(k, ng).

The eigenvalues, λ2
i , of the within-group sums of squares matrix are given by:

λ2
i =

δ2
i

1 − δ2
i

.

and the value of πi = λ2
i /

∑
λ2

i gives the proportion of variation explained by the ith canonical
variate. The values of the πi’s give an indication as to how many canonical variates are needed to
adequately describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than i the χ2 statistic:

(n − 1 − ng − 1
2 (k − ng))

l∑

j=i+1

log(1 + λ2
j )
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can be used. This is asymptotically distributed as a χ2 distribution with (k− i)(ng − 1− i) degrees
of freedom. If the test for i = h is not significant, then the remaining tests for i > h should be
ignored.

The loadings for the canonical variates are calculated from the matrix Ux. This matrix is scaled so
that the canonical variates have unit within group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated
for each group.

Weights can be used with the analysis, in which case the weighted means are subtracted from
each column and then each row is scaled by an amount √

wi, where wi is the weight for the ith
observation (row).

4. Parameters

weight
Input: indicates the type of weights to be used in the analysis.

If weight = Nag NoWeights, then no weights are used.

If weight = Nag Weightsfreq, then the weights are treated as frequencies and the
effective number of observations is the sum of the weights.

If weight = Nag Weightsvar, then the weights are treated as being inversely proportional
to the variance of the observations and the effective number of observations is the
number of observations with non-zero weights.

Constraint: weight = Nag NoWeights, Nag Weightsfreq or Nag Weightsvar.

n
Input: the number of observations, n.
Constraint: n ≥ nx + ng.

m
Input: the total number of variables, m.
Constraint: m ≥ nx.

x[n][tdx]
Input: x[i− 1][j − 1] must contain the ith observation for the jth variable, for i = 1, 2, . . . , n;
j = 1, 2, . . . ,m.

tdx
Input: the last dimension of the array x as declared in the calling program.
Constraint: tdx ≥ m.

isx[m]
Input: isx[j − 1] indicates whether or not the jth variable is to be included in the analysis.
If isx[j−1] > 0, then the variable contained in the jth column of x is included in the canonical
variate analysis, for j = 1, 2, . . . ,m.
Constraint: isx[j − 1] > 0 for nx values of j.

nx
Input: the number of variables in the analysis, nx.
Constraint: nx ≥ 1.

ing[n]
Input: ing[i − 1] indicates which group the ith observation is in, for i = 1, 2, . . . , n. The
effective number of groups is the number of groups with non-zero membership.
Constraint: 1 ≤ ing [i − 1] ≤ ng, for i = 1, 2, . . . , n.

ng
Input: The number of groups, ng.
Constraint: ng ≥ 2.
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wt[n]
Input: if weight = Nag Weightsfreq or Nag Weightsvar then the elements of wt must contain
the weights to be used in the analysis.
If wt[i − 1] = 0.0 then the ith observation is not included in the analysis.
Constraints:

wt[i − 1] ≥ 0.0, for i = 1, 2, . . . , n,
∑n

i=1wt[i − 1] ≥ nx + effective number of groups.

Note: If weight = Nag NoWeights then wt is not referenced and may be set to the null pointer
NULL, i.e (double *)0.

nig[ng]
Output: nig[j − 1] gives the number of observations in group j, for j = 1, 2, . . . , ng.

cvm[ng][tdcvm]
Output: cvm[i − 1][j − 1] contains the mean of the jth canonical variate for the ith group,
for i = 1, 2, . . . , ng; j = 1, 2, . . . , l; the remaining columns, if any, are used as workspace.

tdcvm
Input: the last dimension of the array cvm as declared in the calling program.
Constraint: tdcvm ≥ nx.

e[min(nx,ng-1)][tde]
Output: the statistics of the canonical variate analysis.
e[i − 1][0], the canonical correlations, δi, for i = 1, 2, . . . , l.
e[i − 1][1], the eigenvalues of the within-group sum of squares matrix, λ2

i , for i = 1, 2, . . . , l.
e[i−1][2], the proportion of variation explained by the ith canonical variate, for i = 1, 2, . . . , l.
e[i − 1][3], the χ2 statistic for the ith canonical variate, for i = 1, 2, . . . , l.
e[i−1][4], the degrees of freedom for χ2 statistic for the ith canonical variate, for i = 1, 2, . . . , l.
e[i − 1][5], the significance level for the χ2 statistic for the ith canonical variate, for
i = 1, 2, . . . , l.

tde
Input: the last dimension of the array e as declared in the calling program.
Constraint: tde ≥ 6.

ncv
Output: the number of canonical variates, l. This will be the minimum of ng − 1 and the
rank of x.

cvx[nx][tdcvx]
Output: the canonical variate loadings. cvx[i − 1][j − 1] contains the loading coefficient for
the ith variable on the jth canonical variate, for i = 1, 2, . . . , nx; j = 1, 2, . . . , l; the remaining
columns, if any, are used as workspace.

tdcvx
Input: the last dimension of the array cvx as declared in the calling program.
Constraint: tdcvx ≥ ng−1.

tol
Input: the value of tol is used to decide if the variables are of full rank and, if not, what is the
rank of the variables. The smaller the value of tol the stricter the criterion for selecting the
singular value decomposition. If a non-negative value of tol less than machine precision is
entered, then the square root of machine precision is used instead.
Constraint: tol ≥ 0.0.

irankx
Output: the rank of the dependent variables.
If the variables are of full rank then irankx = nx.
If the variables are not of full rank then irankx is an estimate of the rank of the dependent
variables. irankx is calculated as the number of singular values greater than tol×(largest
singular value).
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fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter weight had an illegal value.

NE INT ARG LT
On entry, nx must not be less than 1: nx = 〈value〉.
On entry, ng must not be less than 2: ng = 〈value〉.
On entry, tde must not be less than 6: tde = 〈value〉.

NE REAL ARG LT
On entry, tol must not be less than 0.0: tol = 〈value〉.

NE 2 INT ARG LT
On entry, m = 〈value〉 while nx = 〈value〉.
These parameters must satisfy m ≥ nx.
On entry, tdx = 〈value〉 while m = 〈value〉.
These parameters must satisfy tdx ≥ m.
On entry, tdcvx = 〈value〉 while ng = 〈value〉.
These parameters must satisfy tdcvx ≥ ng−1.
On entry, tdcvm = 〈value〉 while nx = 〈value〉.
These parameters must satisfy tdcvm ≥ nx.

NE 3 INT ARG CONS
On entry, n = 〈value〉, nx = 〈value〉 and ng = 〈value〉.
These parameters must satisfy n ≥ nx + ng.

NE INTARR INT
On entry, ing[〈value〉] = 〈value〉, ng = 〈value〉.
Constraint: 1 ≤ ing[i − 1] ≤ ng, i = 1, 2, . . . , n.

NE WT ARGS
The wt array argument must not be NULL when the weight argument indicates weights.

NE NEG WEIGHT ELEMENT
On entry, wt[〈value〉] = 〈value〉.
Constraint: When referenced, all elements of wt must be non-negative.

NE VAR INCL INDICATED
The number of variables, nx in the analysis = 〈value〉, while number of variables included in
the analysis via array isx = 〈value〉.
Constraint: these two numbers must be the same.

NE SVD NOT CONV
The singular value decomposition has failed to converge.
This is an unlikely error exit.

NE CANON CORR 1
A canonical correlation is equal to one.
This will happen if the variables provide an exact indication as to which group every
observation is allocated.

NE GROUPS
Either the effective number of groups is less than two or the effective number of groups plus
the number of variables, nx is greater than the the effective number of observations.

NE RANK ZERO
The rank of the variables is zero.
This will happen if all the variables are constants.

NE ALLOC FAIL
Memory allocation failed.
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NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments

6.1. Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition
rather than the traditional computing of a sum of squares matrix and the use of an eigenvalue
decomposition, nag mv canon var should be less affected by ill conditioned problems.

6.2. References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall.
Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations Wiley.
Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM 20(3)

2–25.
Kendall M G and Stuart A (1979) The Advanced Theory of Statistics (3 Volumes) Griffin (4th

Edition).

7. See Also

None.

8. Example

A sample of nine observations, each consisting of three variables plus group indicator, is read in.
There are three groups. An unweighted canonical variate analysis is performed and the results
printed.

8.1. Program Text

/* nag_mv_canon_var (g03acc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define NMAX 9
#define MMAX 3
#define TDE 6

main()
{

double e[MMAX][6];
double x[NMAX][MMAX];
double wt[NMAX];
double cvm[MMAX][MMAX], tol, cvx[MMAX][MMAX];

Integer i, j, m, n;
Integer ng;
Integer nx;
Integer ing[NMAX], nig[MMAX], ncv;
Integer irx, isx[2*MMAX];
Integer tdx=MMAX, tdc=MMAX, tde=TDE;

char wtchar[2];

Nag_Weightstype weight;
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Vprintf("g03acc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n]");

Vscanf("%ld",&n);
Vscanf("%ld",&m);
Vscanf("%ld",&nx);
Vscanf("%ld",&ng);
Vscanf("%s",wtchar);
if (n <= NMAX && m <= MMAX)
{
if (*wtchar == ’W’ || *wtchar == ’V’)
{

for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)

Vscanf("%lf",&x[i][j]);
Vscanf("%lf",&wt[i]);
Vscanf("%ld",&ing[i]);

}
if (*wtchar == ’W’)
weight = Nag_Weightsfreq;

else
weight = Nag_Weightsvar;

}
else
{

for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)

Vscanf("%lf",&x[i][j]);
Vscanf("%ld",&ing[i]);

}
weight = Nag_NoWeights;

}
for (j = 0; j < m; ++j)
Vscanf("%ld",&isx[j]);

tol = 1e-6;
g03acc(weight, n, m, (double *)x, tdx, isx, nx, ing, ng, wt, nig,

(double *)cvm, tdc, (double *)e, tde, &ncv, (double *)cvx,
tdc, tol, &irx, NAGERR_DEFAULT);

Vprintf("%s%2ld\n\n","Rank of x = ",irx);
Vprintf("Canonical Eigenvalues Percentage CHISQ\
DF SIG \n");

Vprintf("Correlations Variation\n");
for (i = 0; i < ncv; ++i)
{

for (j = 0; j < 6; ++j)
Vprintf("%12.4f",e[i][j]);

Vprintf("\n");
}

Vprintf("\nCanonical Coefficients for X\n");
for (i = 0; i < nx; ++i)
{

for (j = 0; j < ncv; ++j)
Vprintf("%9.4f",cvx[i][j]);

Vprintf("\n");
}

Vprintf("\nCanonical variate means\n");
for (i = 0; i < ng; ++i)
{

for (j = 0; j < ncv; ++j)
Vprintf("%9.4f",cvm[i][j]);

Vprintf("\n");
}

exit(EXIT_SUCCESS);
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}
else
{
Vprintf("Incorrect input value of n or m.\n");
exit(EXIT_FAILURE);

}
}

8.2. Program Data

g03acc Example Program Data
9 3 3 3 U
13.3 10.6 21.2 1
13.6 10.2 21.0 2
14.2 10.7 21.1 3
13.4 9.4 21.0 1
13.2 9.6 20.1 2
13.9 10.4 19.8 3
12.9 10.0 20.5 1
12.2 9.9 20.7 2
13.9 11.0 19.1 3
1 1 1

8.3. Program Results

g03acc Example Program Results

Rank of x = 3

Canonical Eigenvalues Percentage CHISQ DF SIG
Correlations Variation

0.8826 3.5238 0.9795 7.9032 6.0000 0.2453
0.2623 0.0739 0.0205 0.3564 2.0000 0.8368

Canonical Coefficients for X
-1.7070 0.7277
-1.3481 0.3138
0.9327 1.2199

Canonical variate means
0.9841 0.2797
1.1805 -0.2632
-2.1646 -0.0164
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